A Hierarchy of Heuristic-Based Models of Crowd Dynamics

被引:0
|
作者
P. Degond
C. Appert-Rolland
M. Moussaïd
J. Pettré
G. Theraulaz
机构
[1] Université de Toulouse,UPS, INSA, UT1, UTM, Institut de Mathématiques de Toulouse
[2] Institut de Mathématiques de Toulouse UMR 5219,CNRS
[3] Université Paris Sud,Laboratoire de Physique Théorique
[4] Laboratoire de Physique Théorique,CNRS, UMR 8627
[5] Max Planck Institute for Human Development,Center for Adaptive Behavior and Cognition
[6] INRIA Rennes – Bretagne Atlantique,Centre de Recherches sur la Cognition Animale, UMR
[7] Université Paul Sabatier,CNRS 5169
[8] Centre de Recherches sur la Cognition Animale,CNRS
来源
关键词
Pedestrian dynamics; Behavioral heuristics; Rational agents; Individual-based models; Kinetic model; Fluid model; Game theory; Closure relation; Monokinetic; von Mises-Fisher distribution; Nash equilibrium;
D O I
暂无
中图分类号
学科分类号
摘要
We derive a hierarchy of kinetic and macroscopic models from a noisy variant of the heuristic behavioral Individual-Based Model of Ngai et al. (Disaster Med. Public Health Prep. 3:191–195, 2009) where pedestrians are supposed to have constant speeds. This IBM supposes that pedestrians seek the best compromise between navigation towards their target and collisions avoidance. We first propose a kinetic model for the probability distribution function of pedestrians. Then, we derive fluid models and propose three different closure relations. The first two closures assume that the velocity distribution function is either a Dirac delta or a von Mises-Fisher distribution respectively. The third closure results from a hydrodynamic limit associated to a Local Thermodynamical Equilibrium. We develop an analogy between this equilibrium and Nash equilibria in a game theoretic framework. In each case, we discuss the features of the models and their suitability for practical use.
引用
收藏
页码:1033 / 1068
页数:35
相关论文
共 50 条
  • [1] A Hierarchy of Heuristic-Based Models of Crowd Dynamics
    Degond, P.
    Appert-Rolland, C.
    Moussaid, M.
    Pettre, J.
    Theraulaz, G.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (06) : 1033 - 1068
  • [2] HEURISTIC-BASED LEARNING
    RUBIN, SH
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1991, 507 : 41 - 50
  • [3] A heuristic-based approach to improve the quality of BPMN business process models
    Nogueira, Fernando Aparecido
    de Oliveira, Hilda Carvalho
    [J]. 2017 11TH IEEE INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT 2017), 2017,
  • [4] Heuristic-based semantic query optimization
    Sciore, E.
    Siegel, M.
    [J]. Proceedings of the Jerusalem Conference on Information Technology, 1990,
  • [5] Heuristic-based model refinement for FLAVERS
    Tan, JB
    Avrunin, GS
    Clarke, LA
    [J]. ICSE 2004: 26TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, PROCEEDINGS, 2004, : 635 - 644
  • [6] SpecMiner: Heuristic-based mining of service behavioral models from interaction traces
    Kabir, Muhammad Ashad
    Han, Jun
    Hossain, Md Arafat
    Versteeg, Steve
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 117 : 59 - 71
  • [7] A heuristic-based approach to conceptual design
    Chong, Yih Tng
    Chen, Chun-Hsien
    Leong, Kah Fai
    [J]. RESEARCH IN ENGINEERING DESIGN, 2009, 20 (02) : 97 - 116
  • [8] Heuristic-based management (I): variation
    Lammoglia, Nelson L.
    Olaya, Camilo
    Villalobos, Jorge
    Calderon, Juan P.
    Valdivia, Juan A.
    Zarama, Roberto
    [J]. KYBERNETES, 2010, 39 (9-10) : 1513 - 1528
  • [9] An Effective Heuristic-Based Approach for Partitioning
    Zhao, Xibin
    Zhang, Hehua
    Jiang, Yu
    Song, Songzheng
    Jiao, Xun
    Gu, Ming
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [10] Heuristic-based backtracking for propositional satisfiability
    Bhalla, A
    Lynce, I
    de Sousa, JT
    Marques-Silva, J
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE-B, 2003, 2902 : 116 - 130