Multi-rate Superplastic Forming of Fine Grain Ti-6Al-4V Titanium Alloy

被引:0
|
作者
Peter Comley
机构
[1] The Boeing Company,
关键词
fine grain; forming time; multirate forming; strain rate; superplastic;
D O I
暂无
中图分类号
学科分类号
摘要
Most parts made by superplastic forming (SPF) have been formed at an optimum strain rate. The rate is selected to give the best SPF properties of the material. However, it has been proposed that multi-rate forming, where an initial high strain rate is successively reduced as the part is strained, can be used to make high strain parts in a much shorter time than traditional SPF forming. This paper examines the performance of fine grain Ti-6Al-4V alloy at very high initial strain rates, from 10–30 times faster than usual, with step reductions at prescribed levels of strain that still enables a total strain of over 2.1 (800%) to be achieved without degradation of the material. The paper also shows that the forming time to 100% deformation can be reduced from 55 min to 9 min. This technique can be used by industry to enable faster flow times and lower production costs of SPF parts.
引用
收藏
页码:150 / 154
页数:4
相关论文
共 50 条
  • [1] Multi-rate superplastic forming of fine grain Ti-6Al-4V titanium alloy
    Comley, Peter
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2007, 16 (02) : 150 - 154
  • [2] The superplastic forming technology of Ti-6Al-4V titanium alloy bellows
    Zhang, KF
    Wang, G
    Wang, GF
    Wang, CW
    Wu, DZ
    SUPERPLASTICITY IN ADVANCED MATERIALS, 2003, 447-4 : 247 - 252
  • [3] A Modified Constitutive Model With Grain Rotation for Superplastic Forming of Ti-6Al-4V Alloy
    Yang, Junzhou
    Wu, Jianjun
    Yang, Dongshen
    Wang, Qishuai
    Wang, Kaiwei
    Zhang, Zengkun
    Wang, Mingzhi
    Muzamil, Muhammad
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2020, 142 (02):
  • [4] Superplastic-like forming of Ti-6Al-4V alloy
    Jun Liu
    Ming-Jen Tan
    Yingyot Aue-u-lan
    Meiling Guo
    Sylvie Castagne
    Beng-Wah Chua
    The International Journal of Advanced Manufacturing Technology, 2013, 69 : 1097 - 1104
  • [5] Superplastic-like forming of Ti-6Al-4V alloy
    Liu, Jun
    Tan, Ming-Jen
    Aue-u-lan, Yingyot
    Guo, Meiling
    Castagne, Sylvie
    Chua, Beng-Wah
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 69 (5-8): : 1097 - 1104
  • [6] Influence of grain size and microstructure on oxidation rates in titanium alloy Ti-6Al-4V under superplastic forming conditions
    Franna Pitt
    M. Ramulu
    Journal of Materials Engineering and Performance, 2004, 13 : 727 - 734
  • [7] A review on superplastic forming of Ti-6Al-4V and other titanium alloys
    Akula, Sai Pratyush
    Ojha, Mihir
    Rao, Kolla Lakshman
    Gupta, Amit Kumar
    MATERIALS TODAY COMMUNICATIONS, 2023, 34
  • [8] Influence of grain size and microstructure on oxidation rates in titanium alloy Ti-6Al-4V under superplastic forming conditions
    Pitt, F
    Ramulu, M
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2004, 13 (06) : 727 - 734
  • [9] Enhanced superplastic forming of Ti-6Al-4V
    Salishchev, G
    Galeyev, R
    Valiakhmetov, O
    Safiullin, R
    Lutfullin, R
    Comley, P
    Patankar, S
    Field, D
    Froes, FH
    HIGH-PERFORMANCE METALLIC MATERIALS FOR COST SENSITIVE APPLICATIONS, PROCEEDINGS, 2002, : 83 - 90
  • [10] FEM study of process parameters in a novel superplastic forming of titanium alloy Ti-6Al-4V
    Jun, Liu
    Elangovan, Parameswaran
    Evgenia, Yakushina
    Nicola, Zuelli
    David, M. Milliken
    Nick, Humphreys
    Les, Gill
    Christopher, Greenough
    20TH METAL FORMING INTERNATIONAL CONFERENCE, METAL FORMING 2024, 2024, 44 : 209 - 217