The present study describes a systematic 3D-QSAR study consisting of pharmacophore modeling, docking, and integration of ligand-based and structure-based drug design approaches, applied on a dataset of 72 Hsp90 inhibitors as anti-cancer agents. The best pharmacophore model, with one H-bond donor (HBD), one H-bond acceptor (HBA), one hydrophobic_aromatic (Hy_Ar), and two hydrophobic_aliphatic (Hy_Al) features, was developed using the Catalyst/HypoGen algorithm on a training set of 35 compounds. The model was further validated using test set, external set, Fisher’s randomization method, and ability of the pharmacophoric features to complement the active site amino acids. Docking analysis was performed using Hsp90 chaperone (PDB-Id: 1uyf) along with water molecules reported to be crucial for binding and catalysis (Sgobba et al. ChemMedChem 4:1399–1409, 2009). Furthermore, an integration of the ligand-based as well as structure-based drug design approaches was done leading to the integrated model, which was found to be superior over the best pharmacophore model in terms of its predictive ability on internal [integrated model 2: R(train) = 0.954, R(test) = 0.888; Hypo-01: R(train) = 0.912 and R(test) = 0.819] as well as on external data set [integrated model 2: R(ext.set) = 0.801; Hypo-01: R(ext.set) = 0.604].