Generalized holographic equipartition for Friedmann–Robertson–Walker universes

被引:0
|
作者
Wen-Yuan Ai
Hua Chen
Xian-Ru Hu
Jian-Bo Deng
机构
[1] LanZhou University,Institute of Theoretical Physics
来源
关键词
Emergent phenomena; FRW universe; Friedmann equation;
D O I
暂无
中图分类号
学科分类号
摘要
The novel idea that spatial expansion of our universe can be regarded as the consequence of the emergence of space was proposed by Padmanabhan. By using of the basic law governing the emergence, which Padmanabhan called holographic equipartition, he also arrives at the Friedmann equation in a flat universe. When generalized to other gravity theories, the holographic equipartition need to be generalized with an expression of f(ΔN,Nsur)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\Delta N,N_{sur})$$\end{document}. In this paper, we give general expressions of f(ΔN,Nsur)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\Delta N,N_{sur})$$\end{document} for generalized holographic equipartition which can be used to derive the Friedmann equations of the Friedmann–Robertson–Walker universe with any spatial curvature in higher (n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {n}+1$$\end{document})-dimensional Einstein gravity, Gauss–Bonnet gravity and more general Lovelock gravity. The results support the viability of the perspective of holographic equipartition.
引用
收藏
相关论文
共 50 条
  • [1] Generalized holographic equipartition for Friedmann-Robertson-Walker universes
    Ai, Wen-Yuan
    Chen, Hua
    Hu, Xian-Ru
    Deng, Jian-Bo
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (04) : 1 - 8
  • [2] UNIQUENESS OF THE "FRIEDMANN-LEMAITRE-ROBERTSON-WALKER UNIVERSES
    MASHHOON, B
    PARTOVI, MH
    [J]. PHYSICAL REVIEW D, 1984, 30 (08): : 1839 - 1842
  • [3] Shear viscosity in Friedmann-Robertson-Walker universes
    Sandoval-Villalbazo, A
    García-Colín, LS
    [J]. PHYSICA A, 2000, 286 (1-2): : 307 - 311
  • [4] Chaos in preinflationary Friedmann-Robertson-Walker universes
    Monerat, GA
    de Oliveira, HP
    Soares, ID
    [J]. PHYSICAL REVIEW D, 1998, 58 (06)
  • [5] PERTURBED FRIEDMANN-ROBERTSON-WALKER UNIVERSES - OBSERVATIONS
    DOMINGUEZTENREIRO, R
    [J]. ASTROPHYSICAL JOURNAL, 1981, 247 (01): : 1 - 8
  • [6] Particle decay in expanding Friedmann-Robertson-Walker universes
    Lankinen, Juho
    Vilja, Iiro
    [J]. PHYSICAL REVIEW D, 2018, 98 (04)
  • [7] On the total energy of open Friedmann-Robertson-Walker universes
    Faraoni, V
    Cooperstock, FI
    [J]. ASTROPHYSICAL JOURNAL, 2003, 587 (02): : 483 - 486
  • [8] Gravitational waves propagating into Friedmann-Robertson-Walker universes
    Bicak, J
    Griffiths, JB
    [J]. ANNALS OF PHYSICS, 1996, 252 (01) : 180 - 210
  • [9] Non-flat Friedmann–Robertson–Walker universe with generalized holographic dark energy
    M. Sharif
    A. Jawad
    [J]. Indian Journal of Physics, 2014, 88 : 529 - 539
  • [10] Probing the creatable character of perturbed Friedmann-Robertson-Walker universes
    Lapiedra, Ramon
    Saez, Diego
    [J]. PHYSICAL REVIEW D, 2008, 77 (10)