Periodic orbits of the two fixed centers problem with a variational gravitational field

被引:0
|
作者
Fabao Gao
Jaume Llibre
机构
[1] Yangzhou University,School of Mathematical Science
[2] Universitat Autònoma de Barcelona,Departament de Matemàtiques
[3] Bellaterra,undefined
关键词
Three-body problem; Periodic orbit; Averaging theory; Variational gravitational field;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence of periodic orbits of the two fixed centers problem bifurcating from the Kepler problem. We provide the analytical expressions of these periodic orbits when the mass parameter of the system is sufficiently small.
引用
收藏
相关论文
共 50 条
  • [1] Periodic orbits of the two fixed centers problem with a variational gravitational field
    Gao, Fabao
    Llibre, Jaume
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2020, 132 (6-7):
  • [2] Orbits in the problem of two fixed centers on the sphere
    Miguel A. Gonzalez Leon
    Juan Mateos Guilarte
    Marina de la Torre Mayado
    Regular and Chaotic Dynamics, 2017, 22 : 520 - 542
  • [3] Orbits in the Problem of Two Fixed Centers on the Sphere
    Gonzalez Leon, Miguel A.
    Mateos Guilarte, Juan
    de la Torre Mayado, Marina
    REGULAR & CHAOTIC DYNAMICS, 2017, 22 (05): : 520 - 542
  • [4] Homoclinic orbits in the Euler problem of two fixed centers
    Kim, Seongchan
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 132 : 55 - 63
  • [5] CIRCULAR ORBITS IN PROBLEM OF 2 FIXED CENTERS
    PITEV, NP
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1975, (03): : 131 - 133
  • [6] VARIATIONAL CONSTRUCTIONS FOR SOME SATELLITE ORBITS IN PERIODIC GRAVITATIONAL FORCE FIELDS
    Chen, Kuo-Chang
    AMERICAN JOURNAL OF MATHEMATICS, 2010, 132 (03) : 681 - 709
  • [7] CIRCULAR ORBITS IN PROBLEM OF N-FIXED CENTERS
    SAZHIN, AI
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1978, (02): : 151 - 155
  • [8] On the existence of periodic orbits for the fixed homogeneous circle problem
    Azevedo, C.
    Ontaneda, P.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 235 (02) : 341 - 365
  • [9] Variational proof of the existence of periodic orbits in the anisotropic Kepler problem
    Shota Iguchi
    Mitsuru Shibayama
    Celestial Mechanics and Dynamical Astronomy, 2023, 135
  • [10] Variational proof of the existence of periodic orbits in the anisotropic Kepler problem
    Iguchi, Shota
    Shibayama, Mitsuru
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2023, 135 (03):