Nernst effect and dimensionality in the quantum limit

被引:72
|
作者
Zhu, Zengwei [1 ,2 ]
Yang, Huan [1 ]
Fauque, Benoit [1 ]
Kopelevich, Yakov [3 ]
Behnia, Kamran [1 ]
机构
[1] UPMC, CNRS, ESPCI, Lab Photons & Mat, F-75005 Paris, France
[2] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
[3] Univ Estadual Campinas, UNICAMP, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
BAND-STRUCTURE; GRAPHITE; GRAPHENE; SYSTEMS; HALL;
D O I
10.1038/NPHYS1437
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Nernst effect has recently emerged as a very sensitive, yet poorly understood, probe of electron organization in solids(1-4). Graphene, a single layer of carbon atoms set in a honeycomb lattice, embeds a two-dimensional gas of massless electrons(5) and hosts a particular version of the quantum Hall effect(6,7). Recent experimental investigations of its thermoelectric response(8-10) are in agreement with the theory conceived for a two-dimensional electron system in the quantum Hall regime(11,12). Here, we report on a study of graphite(13), a macroscopic stack of graphene layers, which establishes a fundamental link between the dimensionality of an electronic system and its Nernst response. In striking contrast with the single-layer case, the Nernst signal sharply peaks whenever a Landau level meets the Fermi level. Thus, the degrees of freedom provided by finite interlayer coupling lead to an enhanced thermoelectric response in the vicinity of the quantum limit. As Landau quantization slices a three-dimensional Fermi surface, each intersection of a Landau level with the Fermi level modifies the Fermi-surface topology. According to our results, the most prominent signature of such a topological phase transition emerges in the transverse thermoelectric response.
引用
收藏
页码:26 / 29
页数:4
相关论文
共 50 条
  • [1] Oscillating Nernst-Ettingshausen effect in bismuth across the quantum limit
    Behnia, Kamran
    Measson, Marie-Aude
    Kopelevich, Yakov
    PHYSICAL REVIEW LETTERS, 2007, 98 (16)
  • [2] Quantum Nernst effect
    Nakamura, H
    Hatano, N
    Shirasaki, R
    SOLID STATE COMMUNICATIONS, 2005, 135 (08) : 510 - 514
  • [3] QUANTUM CONDENSATION, THERMODYNAMIC LIMIT, AND DIMENSIONALITY
    LUDERS, G
    ZEITSCHRIFT FUR NATURFORSCHUNG PART A-ASTROPHYSIK PHYSIK UND PHYSIKALISCHE CHEMIE, 1972, A 27 (02): : 175 - &
  • [4] Impurity Effect in the Quantum Nernst Effect
    Shirasaki, Ryoen
    Nakamura, Hiroaki
    Hatano, Naomichi
    E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2005, 3 : 518 - 523
  • [5] Nernst Response of the Landau Tubes in Graphite across the Quantum Limit
    Fauque, Benoit
    Zhu, Zengwei
    Murphy, Tim
    Behnia, Kamran
    PHYSICAL REVIEW LETTERS, 2011, 106 (24)
  • [6] Quantum kinetic approach to the calculation of the Nernst effect
    Michaeli, Karen
    Finkel'stein, Alexander M.
    PHYSICAL REVIEW B, 2009, 80 (21)
  • [7] Nanomagnet Coupling Phenomena in Quantum Nernst Effect
    Salehian, Mehrdad
    Vaezzadeh, Majid
    Vaezzadeh, Mehdi
    Saeidi, Mohammadreza
    Jalali, Reza
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2009, 6 (03) : 717 - 720
  • [8] QUANTUM NERNST EFFECT IN A BISMUTH SINGLE CRYSTAL
    Matsuo, Mari
    Endo, Akira
    Hatano, Naomichi
    Nakamura, Hiroaki
    Shirasaki, Ryoen
    Sugihara, Ko
    PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF QUANTUM MECHANICS IN THE LIGHT OF NEW TECHNOLOGY, 2009, : 178 - +
  • [9] Quantum Nernst effect in a bismuth single crystal
    Matsuo, M.
    Endo, A.
    Hatano, N.
    Nakamura, H.
    Shirasaki, R.
    Sugihara, K.
    PHYSICAL REVIEW B, 2009, 80 (07)
  • [10] Tunneling spin Nernst effect for a single quantum dot
    Mantsevich, V. N.
    Smirnov, D. S.
    PHYSICAL REVIEW B, 2024, 110 (03)