Interneuron-specific plasticity at parvalbumin and somatostatin inhibitory synapses onto CA1 pyramidal neurons shapes hippocampal output

被引:0
|
作者
Matt Udakis
Victor Pedrosa
Sophie E. L. Chamberlain
Claudia Clopath
Jack R. Mellor
机构
[1] University of Bristol,Center for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience
[2] Imperial College London,Department of Bioengineering
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The formation and maintenance of spatial representations within hippocampal cell assemblies is strongly dictated by patterns of inhibition from diverse interneuron populations. Although it is known that inhibitory synaptic strength is malleable, induction of long-term plasticity at distinct inhibitory synapses and its regulation of hippocampal network activity is not well understood. Here, we show that inhibitory synapses from parvalbumin and somatostatin expressing interneurons undergo long-term depression and potentiation respectively (PV-iLTD and SST-iLTP) during physiological activity patterns. Both forms of plasticity rely on T-type calcium channel activation to confer synapse specificity but otherwise employ distinct mechanisms. Since parvalbumin and somatostatin interneurons preferentially target perisomatic and distal dendritic regions respectively of CA1 pyramidal cells, PV-iLTD and SST-iLTP coordinate a reprioritisation of excitatory inputs from entorhinal cortex and CA3. Furthermore, circuit-level modelling reveals that PV-iLTD and SST-iLTP cooperate to stabilise place cells while facilitating representation of multiple unique environments within the hippocampal network.
引用
收藏
相关论文
共 50 条
  • [1] Interneuron-specific plasticity at parvalbumin and somatostatin inhibitory synapses onto CA1 pyramidal neurons shapes hippocampal output
    Udakis, Matt
    Pedrosa, Victor
    Chamberlain, Sophie E. L.
    Clopath, Claudia
    Mellor, Jack R.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [2] Somatostatin and parvalbumin inhibitory synapses onto hippocampal pyramidal neurons are regulated by distinct mechanisms
    Horn, Meryl E.
    Nicoll, Roger A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (03) : 589 - 594
  • [3] Differential ethanol sensitivity of subpopulations of GABA(A) synapses onto rat hippocampal CA1 pyramidal neurons
    Weiner, JL
    Gu, C
    Dunwiddie, TV
    JOURNAL OF NEUROPHYSIOLOGY, 1997, 77 (03) : 1306 - 1312
  • [4] Contextual Learning Requires Functional Diversity at Excitatory and Inhibitory Synapses onto CA1 Pyramidal Neurons
    Mitsushima, Dai
    AIMS NEUROSCIENCE, 2015, 2 (01) : 7 - 17
  • [5] Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells
    Lushnikova, Irina
    Skibo, Galina
    Muller, Dominique
    Nikonenko, Irina
    NEUROPHARMACOLOGY, 2011, 60 (05) : 757 - 764
  • [6] Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells
    Megías, M
    Emri, Z
    Freund, TF
    Gulyás, AI
    NEUROSCIENCE, 2001, 102 (03) : 527 - 540
  • [7] Specific inhibitory synapses shift the balance from feedforward to feedback inhibition of hippocampal CA1 pyramidal cells
    Elfant, David
    Pal, Balazs Zoltan
    Emptage, Nigel
    Capogna, Marco
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2008, 27 (01) : 104 - 113
  • [8] Metformin Enhances Excitatory Synaptic Transmission onto Hippocampal CA1 Pyramidal Neurons
    Chen, Wen-Bing
    Chen, Jiang
    Liu, Zi-Yang
    Luo, Bin
    Zhou, Tian
    Fei, Er-Kang
    BRAIN SCIENCES, 2020, 10 (10) : 1 - 11
  • [9] Endocannabinoids Differentially Modulate Synaptic Plasticity in Rat Hippocampal CA1 Pyramidal Neurons
    Xu, Jian-Yi
    Chen, Rongqing
    Zhang, Jian
    Chen, Chu
    PLOS ONE, 2010, 5 (04):
  • [10] Mu opioid receptors inhibit GABA release from parvalbumin interneuron terminals onto CA1 pyramidal cells
    Shao, Caifeng
    Chen, Pei
    Chen, Qian
    Zhao, Mingwei
    Zhang, Wei-Ning
    Yang, Kun
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 522 (04) : 1059 - 1062