Transmission Problems for Parabolic Operators on Polygonal Domains and Applications to the Finite Element Method

被引:0
|
作者
Yajie Zhang
Anna L. Mazzucato
机构
[1] Zhongnan University of Economy and Law,School of Mathematics and Statistics
[2] Penn State University,Department of Mathematics
来源
La Matematica | 2022年 / 1卷 / 1期
关键词
Parabolic operators; Transmission; Mixed boundary-value problems; Polygonal domains; Finite element method; 35K10; 35K45; 65M60;
D O I
10.1007/s44007-021-00013-8
中图分类号
学科分类号
摘要
We study linear parabolic equations ∂tu+Lu=f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _t u+Lu=f$$\end{document}, where L=-div(A∇)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L = -{\text {div}}(A \nabla )$$\end{document} is a second-order strongly elliptic operator, on non-smooth two-dimensional bounded domains. The domain is polygonal and not assumed to be convex. The coefficient matrix A is piecewise smooth and exhibits jump discontinuities across a finite number of piecewise smooth curves, collectively denoted the interface. We assume mixed Dirichlet–Neumann boundary conditions and standard transmission conditions at the interface. Under some additional assumptions, we establish well-posedness of the initial-value problem using suitable weighted Sobolev spaces. The solution admits a decomposition u=ureg+ws\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u = u_\mathrm{{reg}} + w_\mathrm{{s}}$$\end{document}, into a function ureg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_\mathrm{{reg}}$$\end{document} that belongs to the weighted Sobolev space and a function ws\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_\mathrm{{s}}$$\end{document} that is locally constant near the vertices, thus proving well-posedness in an augmented space. We use the theoretical analysis to devise graded meshes that give quasi-optimal rates of convergence for a fully discrete scheme that utilizes finite elements on a space grid and finite differences in time.
引用
收藏
页码:225 / 262
页数:37
相关论文
共 50 条
  • [1] Composite Finite Element Approximation for Parabolic Problems in Nonconvex Polygonal Domains
    Pramanick, Tamal
    Sinha, Rajen Kumar
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (02) : 361 - 378
  • [2] Composite finite element approximation for nonlinear parabolic problems in nonconvex polygonal domains
    Pramanick, Tamal
    Sinha, Rajen Kumar
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (06) : 2316 - 2335
  • [3] Parabolic finite element equations in nonconvex polygonal domains
    Chatzipantelidis, P.
    Lazarov, R. D.
    Thomee, V.
    Wahlbin, L. B.
    [J]. BIT NUMERICAL MATHEMATICS, 2006, 46 (Suppl 1) : S113 - S143
  • [4] Analysis of the finite element method for transmission/mixed boundary value problems on general polygonal domains
    Li, Hengguang
    Mazzucato, Anna
    Nistor, Victor
    [J]. Electronic Transactions on Numerical Analysis, 2010, 37 : 41 - 69
  • [5] ANALYSIS OF THE FINITE ELEMENT METHOD FOR TRANSMISSION/MIXED BOUNDARY VALUE PROBLEMS ON GENERAL POLYGONAL DOMAINS
    Li, Hengguang
    Mazzucato, Anna
    Nistor, Victor
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2010, 37 : 41 - 69
  • [6] Parabolic finite element equations in nonconvex polygonal domains
    P. Chatzipantelidis
    R. D. Lazarov
    V. Thomée
    L. B. Wahlbin
    [J]. BIT Numerical Mathematics, 2006, 46 : 113 - 143
  • [7] Parabolic Finite Volume Element Equations in Nonconvex Polygonal Domains
    Chatzipantelidis, P.
    Lazarov, R. D.
    Thomee, V.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (03) : 507 - 525
  • [8] Error estimates for a finite volume element method for parabolic equations in convex polygonal domains
    Chatzipantelidis, P
    Lazarov, RD
    Thomée, V
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (05) : 650 - 674
  • [9] A nonconforming finite element method for convection-diffusion problems on polygonal domains
    Adam, D
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 333 - 334
  • [10] Application of a finite element method variant in nonconvex domains to parabolic problems
    Anand, Anjaly
    Pramanick, Tamal
    Das, Abhishek
    [J]. Finite Elements in Analysis and Design, 2024, 242