On the Ricci Curvature of Compact Spacelike Hypersurfaces in Einstein Conformally Stationary-Closed Spacetimes

被引:0
|
作者
Juan A. Aledo
José A. Gálvez
机构
[1] Universidad de Castilla-La Mancha,Departamento de Matemáticas
[2] Escuela Politécnica Superior de Albacete,Departamento de Geometría y Topología
[3] Universidad de Granada,undefined
来源
关键词
Einstein spacetime; conformally stationary-closed spacetime; spacelike hypersurface; Ricci curvature; generalized Robertson-Walker spacetime;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we develop an integral formula involving the Ricci and scalar curvatures of a compact spacelike hypersurface M in a spacetime \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline M $$ \end{document} equipped with a timelike closed conformal vector field K (in short, conformally stationary-closed spacetime), and we apply it, when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline M $$ \end{document} is Einstein, in order to establish sufficient conditions for M to be a leaf of the foliation determined by K and to obtain some non-existence results. We also get some interesting consequences for the particular case when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline M $$ \end{document} is a generalized Robertson-Walker spacetime.
引用
收藏
页码:651 / 665
页数:14
相关论文
共 50 条