The Banach spaces associated with g-frames

被引:0
|
作者
Liang Li
Aifang Liu
机构
[1] Nanjing Audit University,College of Statistics and Data Science
[2] Taiyuan University of Technology,College of Mathematics
关键词
G-frames; G-Riesz bases; Dilations; Dual g-frames; 42C15; 46L10; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the Banach spaces induced by a g-frame and lp(⊕i∈NHi),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^p(\oplus _{i\in {\mathbb{N}}} {H_i}),$$\end{document} where 1≤p<2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p<2.$$\end{document} We study the different aspects of these spaces corresponding to reconstructions, existence and dilations. Specially, we obtain that for all closed subspaces of a Hilbert space H,  only the finite dimensional ones with a g-orthonormal basis can be realized as such a Banach space associated a g-frame. We also prove that under some conditions of the g-frame, the g-frame expansion of any element in the Banach space associated with it converges in both the Hilbert space norm and the associated Banach norm. Moreover, we give a dilation result of such space with the dilation properties of g-frames.
引用
收藏
相关论文
共 50 条
  • [1] The Banach spaces associated with g-frames
    Li, Liang
    Liu, Aifang
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (01)
  • [2] Fusion frames and G-frames in Banach spaces
    AMIR KHOSRAVI
    BEHROOZ KHOSRAVI
    [J]. Proceedings - Mathematical Sciences, 2011, 121 : 155 - 164
  • [3] Fusion frames and G-frames in Banach spaces
    Khosravi, Amir
    Khosravi, Behrooz
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2011, 121 (02): : 155 - 164
  • [4] Some properties of g-frames in Banach spaces
    Khosravi, Amir
    Banyarani, Jamaleh Sohrabi
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2018, 16 (06)
  • [5] G-FRAMES AND STABILITY OF G-FRAMES IN HILBERT SPACES
    Najati, Abbas
    Faroughi, M. H.
    Rahimi, Asghar
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2008, 14 (03): : 271 - 286
  • [6] Controlled g-frames and dual g-frames in Hilbert spaces
    Hui-Min Liu
    Yan-Ling Fu
    Yu Tian
    [J]. Journal of Inequalities and Applications, 2023
  • [7] Controlled g-frames and dual g-frames in Hilbert spaces
    Liu, Hui-Min
    Fu, Yan-Ling
    Tian, Yu
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [8] Characterizations of Disjointness of g-Frames and Constructions of g-Frames in Hilbert Spaces
    Guo, Xunxiang
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (07) : 1547 - 1563
  • [9] Decompositions of g-Frames and Duals and Pseudoduals of g-Frames in Hilbert Spaces
    Guo, Xunxiang
    [J]. JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [10] CHARACTEIZATIONS OF WOVEN g-FRAMES AND WEAVING g-FRAMES IN HILBERT SPACES AND C*-MODULES
    Amir KHOSRAVI
    Mohammad Reza FARMANI
    [J]. Acta Mathematica Scientia, 2023, 43 (06) : 2471 - 2482