Sasaki–Einstein 7-manifolds and Orlik’s conjecture

被引:0
|
作者
Jaime Cuadros Valle
Joe Lope Vicente
机构
[1] Pontificia Universidad Católica del Perú,Departamento de Ciencias, Sección Matemáticas
来源
关键词
Links of weighted hypersurfaces; Orlik’s conjecture; Rational homology 7-spheres; Sasaki–Einstein metrics; 53C25; 57R60;
D O I
暂无
中图分类号
学科分类号
摘要
We study the homology groups of certain 2-connected 7-manifolds admitting quasi-regular Sasaki–Einstein metrics, among them, we found 52 new examples of Sasaki–Einstein rational homology 7-spheres, extending the list given by Boyer et al. (Ann Inst Fourier 52(5):1569–1584, 2002). As a consequence, we exhibit new families of positive Sasakian homotopy 9-spheres given as cyclic branched covers, determine their diffeomorphism types and find out which elements do not admit extremal Sasaki metrics. We also improve previous results given by Boyer (Note Mat 28:63–105, 2008) showing new examples of Sasaki–Einstein 2-connected 7-manifolds homeomorphic to connected sums of S3×S4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^3\times S^4$$\end{document}. Actually, we show that manifolds of the form #kS3×S4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\#k\left( S^{3} \times S^{4}\right) $$\end{document} admit Sasaki–Einstein metrics for 22 different values of k. All these links arise as Thom–Sebastiani sums of chain type singularities and cycle type singularities where Orlik’s conjecture holds due to a recent result by Hertling and Mase (J Algebra Number Theory 16(4):955–1024, 2022).
引用
收藏
相关论文
共 50 条
  • [1] Sasaki-Einstein 7-manifolds and Orlik's conjecture
    Cuadros Valle, Jaime
    Lope Vicente, Joe
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2024, 65 (01)
  • [2] Sasaki-Einstein 7-Manifolds, Orlik Polynomials and Homology
    Gomez, Ralph R.
    [J]. SYMMETRY-BASEL, 2019, 11 (07):
  • [3] Sasaki-Einstein metrics on a class of 7-manifolds
    Boyer, Charles P.
    Tonnesen-Friedman, Christina W.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2019, 140 : 111 - 124
  • [4] Compact Homogeneous Einstein 7-Manifolds
    YU. G. Nikonorov
    [J]. Geometriae Dedicata, 2004, 109 : 7 - 30
  • [5] Compact homogeneous Einstein 7-manifolds
    Nikonorov, YG
    [J]. GEOMETRIAE DEDICATA, 2004, 109 (01) : 7 - 30
  • [6] Brane brick models for the Sasaki-Einstein 7-manifolds Yp,k(ℂℙ1× ℂℙ1) and Yp,k(ℂℙ2)
    Sebastián Franco
    Dongwook Ghim
    Rak-Kyeong Seong
    [J]. Journal of High Energy Physics, 2023
  • [7] TRANSVERSE KAHLER GEOMETRY OF SASAKI MANIFOLDS AND TORIC SASAKI-EINSTEIN MANIFOLDS
    Futaki, Akito
    Ono, Hajime
    Wang, Guofang
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 83 (03) : 585 - 635
  • [8] Sasaki–Einstein Manifolds and Volume Minimisation
    Dario Martelli
    James Sparks
    Shing-Tung Yau
    [J]. Communications in Mathematical Physics, 2008, 280 : 611 - 673
  • [9] Instantons on Sasakian 7-manifolds
    Portilla, Luis E.
    Sa Earp, Henrique N.
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2023, 74 (03): : 1027 - 1083
  • [10] Obstruction theory on 7-manifolds
    Cadek, Martin
    Crabb, Michael
    Salac, Tomas
    [J]. MANUSCRIPTA MATHEMATICA, 2020, 163 (3-4) : 343 - 359