Asymptotic Behavior for a Version of Directed Percolation on the Triangular Lattice

被引:0
|
作者
Shu-Chiuan Chang
Lung-Chi Chen
机构
[1] National Cheng Kung University,Department of Physics
[2] National Taiwan University,Physics Division, National Center for Theoretical Science
[3] Fu Jen Catholic University,Department of Mathematics
来源
关键词
Domany–Kinzel model; Directed percolation; Random walk; Asymptotic behavior; Berry–Esseen theorem; Large deviation;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a version of directed bond percolation on the triangular lattice such that vertical edges are directed upward with probability y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y$$\end{document}, diagonal edges are directed from lower-left to upper-right or lower-right to upper-left with probability d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}, and horizontal edges are directed rightward with probabilities x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document} and one in alternate rows. Let τ(M,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (M,N)$$\end{document} be the probability that there is at least one connected-directed path of occupied edges from (0,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,0)$$\end{document} to (M,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M,N)$$\end{document}. For each x∈[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in [0,1]$$\end{document}, y∈[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y \in [0,1)$$\end{document}, d∈[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \in [0,1)$$\end{document} but (1-y)(1-d)≠1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-y)(1-d) \ne 1$$\end{document} and aspect ratio α=M/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =M/N$$\end{document} fixed for the triangular lattice with diagonal edges from lower-left to upper-right, we show that there is an αc=(d-y-dy)/[2(d+y-dy)]+[1-(1-d)2(1-y)2x]/[2(d+y-dy)2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _c = (d-y-dy)/[2(d+y-dy)] + [1-(1-d)^2(1-y)^2x]/[2(d+y-dy)^2]$$\end{document} such that as N→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \rightarrow \infty $$\end{document}, τ(M,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (M,N)$$\end{document} is 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document}, 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0$$\end{document} and 1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/2$$\end{document} for α>αc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha > \alpha _c$$\end{document}, α<αc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha < \alpha _c$$\end{document} and α=αc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =\alpha _c$$\end{document}, respectively. A corresponding result is obtained for the triangular lattice with diagonal edges from lower-right to upper-left. We also investigate the rate of convergence of τ(M,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (M,N)$$\end{document} and the asymptotic behavior of τ(MN-,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (M_N^-,N)$$\end{document} and τ(MN+,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (M_N^+ ,N)$$\end{document} where MN-/N↑αc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_N^-/N\uparrow \alpha _c$$\end{document} and MN+/N↓αc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_N^+/N\downarrow \alpha _c$$\end{document} as N↑∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\uparrow \infty $$\end{document}.
引用
收藏
页码:500 / 522
页数:22
相关论文
共 50 条
  • [1] Asymptotic Behavior for a Version of Directed Percolation on the Triangular Lattice
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2014, 155 (03) : 500 - 522
  • [2] Asymptotic behavior for a version of directed percolation on a square lattice
    Chen, Lung-Chi
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (03) : 419 - 426
  • [3] Asymptotic behavior for a version of directed percolation on the honeycomb lattice
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 436 : 547 - 557
  • [4] Series expansions of the percolation probability on the directed triangular lattice
    Jensen, I
    Guttmann, AJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (03): : 497 - 517
  • [5] FINITE-SIZE SCALING FOR DIRECTED BOND PERCOLATION WITH AND WITHOUT CYCLES ON A TRIANGULAR LATTICE
    CHAME, A
    DEQUEIROZ, SLA
    DOSSANTOS, RR
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (09): : L527 - L532
  • [6] Percolation on an isotropically directed lattice
    de Noronha, Aurelio W. T.
    Moreira, Andre A.
    Vieira, Andre P.
    Herrmann, Hans J.
    Andrade, Jose S., Jr.
    Carmona, Humberto A.
    [J]. PHYSICAL REVIEW E, 2018, 98 (06)
  • [7] Iterative site percolation on triangular lattice
    Li, Ming
    Deng, Youjin
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [8] Stacked triangular lattice: Percolation properties
    Schrenk, K. J.
    Araujo, N. A. M.
    Herrmann, H. J.
    [J]. PHYSICAL REVIEW E, 2013, 87 (03)
  • [9] Asymptotic behavior of acyclic and cyclic orientations of directed lattice graphs
    Chang, Shu-Chiuan
    Shrock, Robert
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 540
  • [10] PERCOLATION PROBABILITY FOR SITE PROBLEM ON TRIANGULAR LATTICE
    SYKES, MF
    GLEN, M
    GAUNT, DS
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1974, 7 (09): : L105 - L108