Random Time-Dependent Quantum Walks

被引:0
|
作者
Alain Joye
机构
[1] UJF-Grenoble 1,
[2] CNRS Institut Fourier UMR 5582,undefined
来源
关键词
Internal Degree; Large Deviation Principle; Quantum Walk; Diffusion Matrix; Jump Function;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the discrete time unitary dynamics given by a quantum walk on the lattice \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}^d}$$\end{document} performed by a quantum particle with internal degree of freedom, called coin state, according to the following iterated rule: a unitary update of the coin state takes place, followed by a shift on the lattice, conditioned on the coin state of the particle. We study the large time behavior of the quantum mechanical probability distribution of the position observable in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}^d}$$\end{document} when the sequence of unitary updates is given by an i.i.d. sequence of random matrices. When averaged over the randomness, this distribution is shown to display a drift proportional to the time and its centered counterpart is shown to display a diffusive behavior with a diffusion matrix we compute. A moderate deviation principle is also proven to hold for the averaged distribution and the limit of the suitably rescaled corresponding characteristic function is shown to satisfy a diffusion equation. A generalization to unitary updates distributed according to a Markov process is also provided.
引用
收藏
页码:65 / 100
页数:35
相关论文
共 50 条
  • [1] Random Time-Dependent Quantum Walks
    Joye, Alain
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (01) : 65 - 100
  • [2] Survival probabilities in time-dependent random walks
    Nakar, E
    Hod, S
    [J]. PHYSICAL REVIEW E, 2004, 70 (01): : 016116 - 1
  • [3] Limit theory for random walks in degenerate time-dependent random environments
    Biskup, Marek
    Rodriguez, Pierre-Francois
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (04) : 985 - 1046
  • [4] Invariance in quantum walks with time-dependent coin operators
    Montero, Miquel
    [J]. PHYSICAL REVIEW A, 2014, 90 (06):
  • [5] Time-dependent random walks and the theory of complex adaptive systems
    Hod, S
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (12)
  • [6] Random walks on complex networks under time-dependent stochastic resetting
    Chen, Hanshuang
    Ye, Yanfei
    [J]. PHYSICAL REVIEW E, 2022, 106 (04)
  • [7] GENERALIZED MASTER EQUATIONS FOR RANDOM WALKS WITH TIME-DEPENDENT JUMP SIZES
    Torrejon, Diego
    Emelianenko, Maria
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (03) : 1330 - 1349
  • [8] Continuous-time random walks on networks with vertex- and time-dependent forcing
    Angstmann, C. N.
    Donnelly, I. C.
    Henry, B. I.
    Langlands, T. A. M.
    [J]. PHYSICAL REVIEW E, 2013, 88 (02):
  • [9] Parrondo's paradox in quantum walks with time-dependent coin operators
    Pires, Marcelo A.
    Queiros, Silvio M. Duarte
    [J]. PHYSICAL REVIEW E, 2020, 102 (04)
  • [10] DIFFUSION OF A QUANTUM PARTICLE IN TIME-DEPENDENT RANDOM POTENTIAL
    LEBEDEV, NI
    SOKOLOFF, DD
    KAGANOVICH, AS
    [J]. JOURNAL DE PHYSIQUE I, 1991, 1 (09): : 1213 - 1215