p53 and little brother p53/47: linking IRES activities with protein functions

被引:0
|
作者
R Grover
M M Candeias
R Fåhraeus
S Das
机构
[1] Indian Institute of Science,Department of Microbiology and Cell Biology
[2] Inserm U716,undefined
[3] Pharmacologie Expérimentale,undefined
[4] Institut Génétique Moléculaire,undefined
[5] Hôpital St Louis and Université Paris 7,undefined
[6] 4Current address: Institute of Bioinformatics and Applied Biotechnology,undefined
[7] Bangalore,undefined
[8] India.,undefined
[9] 5Current address: Department of Clinical Molecular Biology,undefined
[10] Graduate School of Medicine Kyoto University,undefined
[11] Kyoto 606-8507,undefined
[12] Japan.,undefined
来源
Oncogene | 2009年 / 28卷
关键词
p53; p53/47; IRES; translational control;
D O I
暂无
中图分类号
学科分类号
摘要
The tumor suppressor p53 represents a paradigm for gene regulation. Its rapid induction in response to DNA damage conditions has been attributed to both increased half-life of p53 protein and also increased translation of p53 mRNA. Recent advances in our understanding of the post-transcriptional regulation of p53 include the discovery of internal ribosome entry sites (IRESs) within the p53 mRNA. These IRES elements regulate the translation of the full length as well as the N-terminally truncated isoform, p53/47. The p53/47 isoform is generated by alternative initiation at an internal AUG codon present within the p53 ORF. The aim of this review is to summarize the role of translational control mechanisms in regulating p53 functions. We discuss here in detail how diverse cellular stress pathways trigger alterations in the cap-dependent and cap-independent translation of p53 mRNA and how changes in the relative expression levels of p53 isoforms result in more differentiated p53 activity.
引用
收藏
页码:2766 / 2772
页数:6
相关论文
共 50 条
  • [1] p53 and little brother p53/47: linking IRES activities with protein functions
    Grover, R.
    Candeias, M. M.
    Fahraeus, R.
    Das, S.
    ONCOGENE, 2009, 28 (30) : 2766 - 2772
  • [2] Understanding p53 functions through p53 antibodies
    Sabapathy, Kanaga
    Lane, David P.
    JOURNAL OF MOLECULAR CELL BIOLOGY, 2019, 11 (04) : 317 - 329
  • [3] Computational protein chemistry of p53 and p53 peptides
    Brandt-Rauf, PW
    Rosal, RV
    Fine, RL
    Pincus, MR
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2004, 9 : 2778 - 2787
  • [4] THE p53 REGULON UNRAVELS DISTINCT DEVELOPMENTAL FUNCTIONS OF p53
    Li, Y.
    Liu, J.
    McLaughlin, N.
    Bachvarov, D.
    Saifudeen, Z.
    El-Dahr, S.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2013, 61 (02) : 484 - 484
  • [5] Overexpression of p53 protein and p53 mutations in oral carcinoma
    Barten, M
    Ostwald, C
    Gogacz, P
    Wukasch, Y
    Gundlach, K
    MildeLangosch, K
    Loning, T
    HEAD AND NECK CANCER - ADVANCES IN BASIC RESEARCH, 1996, 1114 : 313 - 319
  • [6] PML is a direct p53 target that modulates p53 effector functions
    de Stanchina, E
    Querido, E
    Narita, M
    Davuluri, RV
    Pandolfi, PP
    Ferbeyre, G
    Lowe, SW
    MOLECULAR CELL, 2004, 13 (04) : 523 - 535
  • [7] Living with p53, dying of p53
    Aylon, Yael
    Oren, Moshe
    CELL, 2007, 130 (04) : 597 - 600
  • [8] FORMS AND FUNCTIONS OF P53
    MILNER, J
    SEMINARS IN CANCER BIOLOGY, 1994, 5 (03) : 211 - 219
  • [9] Common p53 mutations induce IRES-mediated translation of oncogenic shorter p53 isoforms
    Pereira, Bruna F.
    Lacerda, Rafaela
    Lopez-Iniesta, Maria
    Romao, Luisa
    Candeias, Marco M.
    MEDICINE, 2019, 98 (26)
  • [10] Annexin A2 and PSF proteins interact with p53 IRES and regulate translation of p53 mRNA
    Sharathchandra, Arandkar
    Lal, Ridhima
    Khan, Debjit
    Das, Saumitra
    RNA BIOLOGY, 2012, 9 (12) : 1429 - 1439