Hierarchical deep learning models using transfer learning for disease detection and classification based on small number of medical images

被引:0
|
作者
Guangzhou An
Masahiro Akiba
Kazuko Omodaka
Toru Nakazawa
Hideo Yokota
机构
[1] Topcon Corporation,R&D Division
[2] Kobe University,Graduate School of System Informatics
[3] RIKEN Center for Advanced Photonics,Image Processing Research Team
[4] RIKEN,Graduate School of Medicine
[5] Tohoku University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Deep learning is being employed in disease detection and classification based on medical images for clinical decision making. It typically requires large amounts of labelled data; however, the sample size of such medical image datasets is generally small. This study proposes a novel training framework for building deep learning models of disease detection and classification with small datasets. Our approach is based on a hierarchical classification method where the healthy/disease information from the first model is effectively utilized to build subsequent models for classifying the disease into its sub-types via a transfer learning method. To improve accuracy, multiple input datasets were used, and a stacking ensembled method was employed for final classification. To demonstrate the method’s performance, a labelled dataset extracted from volumetric ophthalmic optical coherence tomography data for 156 healthy and 798 glaucoma eyes was used, in which glaucoma eyes were further labelled into four sub-types. The average weighted accuracy and Cohen’s kappa for three randomized test datasets were 0.839 and 0.809, respectively. Our approach outperformed the flat classification method by 9.7% using smaller training datasets. The results suggest that the framework can perform accurate classification with a small number of medical images.
引用
收藏
相关论文
共 50 条
  • [1] Hierarchical deep learning models using transfer learning for disease detection and classification based on small number of medical images
    An, Guangzhou
    Akiba, Masahiro
    Omodaka, Kazuko
    Nakazawa, Toru
    Yokota, Hideo
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [2] Modality Classification and Concept Detection in Medical Images using Deep Transfer Learning
    Singh, Sonit
    Ho-Shon, Kevin
    Karimi, Sarvnaz
    Hamey, Len
    2018 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2018,
  • [3] Automated Brain Disease Classification using Transfer Learning based Deep Learning Models
    Alam, Farhana
    Tisha, Farhana Chowdhury
    Rahman, Sara Anisa
    Sultana, Samia
    Chowdhury, Md. Ahied Mahi
    Reza, Ahmed Wasif
    Shamsul, Mohammad
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (09) : 941 - 949
  • [4] Classification of Alzheimer's Disease Based on Deep Learning Using Medical Images
    Vega-Huerta, Hugo
    Pantoja-Pimentel, Kevin Renzo
    Jaimes, Sebastian Yimmy Quintanilla-
    Maquen-Nino, Gisella Luisa Elena
    De-La-Cruz-VdV, Percy
    Guerra-Grados, Luis
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (10) : 101 - 114
  • [5] Medical thermograms' classification using deep transfer learning models and methods
    Ornek, Ahmet Haydar
    Ceylan, Murat
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (07) : 9367 - 9384
  • [6] Medical thermograms’ classification using deep transfer learning models and methods
    Ahmet Haydar Ornek
    Murat Ceylan
    Multimedia Tools and Applications, 2022, 81 : 9367 - 9384
  • [7] Eye Disease Detection Using Deep Learning Models with Transfer Learning Techniques
    Vardhan, Kalla Bharath
    Nidhish, Mandava
    Kiran, C. Surya
    Shameem, D. Nahid
    Charan, V. Sai
    Bhavadharini, R. M.
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2025, 12 (01):
  • [8] Medical images classification using deep learning: a survey
    Rakesh Kumar
    Pooja Kumbharkar
    Sandeep Vanam
    Sanjeev Sharma
    Multimedia Tools and Applications, 2024, 83 : 19683 - 19728
  • [9] Medical images classification using deep learning: a survey
    Kumar, Rakesh
    Kumbharkar, Pooja
    Vanam, Sandeep
    Sharma, Sanjeev
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (07) : 19683 - 19728
  • [10] Deep learning based binary classification of diabetic retinopathy images using transfer learning approach
    Saproo, Dimple
    Mahajan, Aparna N.
    Narwal, Seema
    JOURNAL OF DIABETES AND METABOLIC DISORDERS, 2024, 23 (02) : 2289 - 2314