Parametrization of tamely ramified maximal tori using bounded subgroups

被引:0
|
作者
François Courtès
机构
[1] CNRS Université de Poitiers,Département de Mathématiques
[2] UMR 6086 du CNRS,undefined
来源
关键词
Reductive groups over local fields; Maximal tori; Bounded subgroups; Linear algebraic groups over residual fields; 22E20; 20G15;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{G}$$\end{document} be a reductive group defined over a local complete field F with discrete valuation, and split over some unramified extension of F, and let G be its group of F-points. In this paper, we define a class of abelian “torus-like” subgroups in nonreductive groups, called pseudo-tori, which generalizes the notion of torus, and we establish a correspondence between conjugacy classes of tamely ramified maximal tori of G and association classes of maximal pseudo-tori of the quotients of parahorics of G by their second congruence subgroup, viewed as groups of k-points of algebraic groups defined over the residual field k of F.
引用
收藏
页码:1 / 33
页数:32
相关论文
共 8 条