Stochastic Wave Function Approach to Generalized Master Equations

被引:0
|
作者
Heinz-Peter Breuer
Bernd Kappler
Francesco Petruccione
机构
[1] Albert Ludwigs Universität,Fakultät für Physik
来源
关键词
stochastic wave function; generalized master equations; time-convolutionless projection operator technique; open quantum systems;
D O I
暂无
中图分类号
学科分类号
摘要
A generalization of the stochastic wave function method is presented that allows the unraveling of arbitrary linear quantum master equations that are not necessarily in Lindblad form and, moreover, the explicit treatment of memory effects by employing the time-convolutionless projection operator technique. The crucial point of this construction is the description of the open system in a doubled Hilbert space, which has already been successfully used for the computation of multitime correlation functions.
引用
收藏
页码:695 / 702
页数:7
相关论文
共 50 条
  • [1] Stochastic wave function approach to generalized master equations
    Breuer, HP
    Kappler, B
    Petruccione, F
    JOURNAL OF SUPERCONDUCTIVITY, 1999, 12 (06): : 695 - 702
  • [2] Stochastic wave-function unraveling of the generalized Lindblad master equation
    Moodley, Mervlyn
    Petruccione, Francesco
    PHYSICAL REVIEW A, 2009, 79 (04):
  • [3] STOCHASTIC MASTER EQUATIONS - PERTURBATIVE APPROACH
    BESIERIS, IM
    JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (03) : 358 - &
  • [5] Wave-function approach to Master equations for quantum transport and measurement
    Shmuel Gurvitz
    Frontiers of Physics, 2017, 12
  • [6] Stochastic wave-function method for non-Markovian quantum master equations
    Breuer, Heinz-Peter
    Kappler, Bernd
    Petruccione, Francesco
    Physical Review A. Atomic, Molecular, and Optical Physics, 1999, 59 (02):
  • [7] Stochastic wave-function method for non-Markovian quantum master equations
    Breuer, Heinz-Peter
    Kappler, Bernd
    Petruccione, Francesco
    Physical Review A - Atomic, Molecular, and Optical Physics, 1999, 59 (2-3): : 1633 - 1643
  • [8] Stochastic wave-function method for non-Markovian quantum master equations
    Breuer, HP
    Kappler, B
    Petruccione, F
    PHYSICAL REVIEW A, 1999, 59 (02): : 1633 - 1643
  • [9] Generalized local and nonlocal master equations for some stochastic processes
    Zhao, Yanxiang
    Wang, Jiakou
    Ma, Yanping
    Du, Qiang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (11) : 2497 - 2512
  • [10] REGULARITY OF SOLUTIONS TO QUANTUM MASTER EQUATIONS: A STOCHASTIC APPROACH
    Mora, Carlos M.
    ANNALS OF PROBABILITY, 2013, 41 (3B): : 1978 - 2012