Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks

被引:0
|
作者
Djohan Bonnet
Tifenn Hirtzlin
Atreya Majumdar
Thomas Dalgaty
Eduardo Esmanhotto
Valentina Meli
Niccolo Castellani
Simon Martin
Jean-François Nodin
Guillaume Bourgeois
Jean-Michel Portal
Damien Querlioz
Elisa Vianello
机构
[1] Université Grenoble Alpes,
[2] CEA,undefined
[3] LETI,undefined
[4] Université Paris-Saclay,undefined
[5] CNRS,undefined
[6] Centre de Nanosciences et de Nanotechnologies,undefined
[7] Université Grenoble Alpes,undefined
[8] CEA,undefined
[9] LIST,undefined
[10] Aix-Marseille Université,undefined
[11] CNRS,undefined
[12] Institut Matériaux Microélectronique Nanosciences de Provence,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Safety-critical sensory applications, like medical diagnosis, demand accurate decisions from limited, noisy data. Bayesian neural networks excel at such tasks, offering predictive uncertainty assessment. However, because of their probabilistic nature, they are computationally intensive. An innovative solution utilizes memristors’ inherent probabilistic nature to implement Bayesian neural networks. However, when using memristors, statistical effects follow the laws of device physics, whereas in Bayesian neural networks, those effects can take arbitrary shapes. This work overcome this difficulty by adopting a variational inference training augmented by a “technological loss”, incorporating memristor physics. This technique enabled programming a Bayesian neural network on 75 crossbar arrays of 1,024 memristors, incorporating CMOS periphery for in-memory computing. The experimental neural network classified heartbeats with high accuracy, and estimated the certainty of its predictions. The results reveal orders-of-magnitude improvement in inference energy efficiency compared to a microcontroller or an embedded graphics processing unit performing the same task.
引用
收藏
相关论文
共 50 条
  • [1] Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks
    Bonnet, Djohan
    Hirtzlin, Tifenn
    Majumdar, Atreya
    Dalgaty, Thomas
    Esmanhotto, Eduardo
    Meli, Valentina
    Castellani, Niccolo
    Martin, Simon
    Nodin, Jean-Francois
    Bourgeois, Guillaume
    Portal, Jean-Michel
    Querlioz, Damien
    Vianello, Elisa
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [3] Advances in Memristor-Based Neural Networks
    Xu, Weilin
    Wang, Jingjuan
    Yan, Xiaobing
    FRONTIERS IN NANOTECHNOLOGY, 2021, 3
  • [4] High-Efficient Memristor-Based Bayesian Convolutional Neural Networks for Out-of-Distribution Detection by Uncertainty Estimation
    Lin, Yudeng
    Zhang, Qingtian
    Gao, Bin
    Tang, Jianshi
    Zhao, Han
    Qin, Qi
    Wang, Ze
    Qian, He
    Wu, Huaqiang
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2025, 72 (01) : 206 - 214
  • [5] Memristor-Based Binarized Spiking Neural Networks
    Eshraghian, Jason K.
    Wang, Xinxin
    Lu, Wei D.
    IEEE NANOTECHNOLOGY MAGAZINE, 2022, 16 (02) : 14 - 23
  • [6] Offline Training for Memristor-based Neural Networks
    Boquet, Guillem
    Macias, Edwar
    Morell, Antoni
    Serrano, Javier
    Miranda, Enrique
    Lopez Vicario, Jose
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1547 - 1551
  • [7] A memristor-based Bayesian machine
    Harabi, Kamel-Eddine
    Hirtzlin, Tifenn
    Turck, Clement
    Vianello, Elisa
    Laurent, Raphael
    Droulez, Jacques
    Bessiere, Pierre
    Portal, Jean-Michel
    Bocquet, Marc
    Querlioz, Damien
    NATURE ELECTRONICS, 2023, 6 (01) : 52 - +
  • [8] A memristor-based Bayesian machine
    Kamel-Eddine Harabi
    Tifenn Hirtzlin
    Clément Turck
    Elisa Vianello
    Raphaël Laurent
    Jacques Droulez
    Pierre Bessière
    Jean-Michel Portal
    Marc Bocquet
    Damien Querlioz
    Nature Electronics, 2023, 6 : 52 - 63
  • [9] Memristor-based Bayesian spiking neural network for IBD diagnosis
    Li, Xiaowen
    Wu, Qiqiao
    Chen, Yuanwen
    Jin, Yang
    Ma, Jianxia
    Yang, Jianguo
    KNOWLEDGE-BASED SYSTEMS, 2024, 300
  • [10] Equilibrium Propagation for Memristor-Based Recurrent Neural Networks
    Zoppo, Gianluca
    Marrone, Francesco
    Corinto, Fernando
    FRONTIERS IN NEUROSCIENCE, 2020, 14