On graphs in which all neighborhoods of vertices are locally pseudocyclic graphs

被引:0
|
作者
V. V. Kabanov
A. A. Makhnev
机构
[1] Russian Academy of Sciences,Krasovskii Institute of Mathematics and Mechanics, Ural Branch
[2] Ural Federal University,undefined
来源
Doklady Mathematics | 2014年 / 89卷
关键词
Regular Graph; Small Eigenvalue; Intersection Array; Distance Regular Graph; Johnson Graph;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:76 / 79
页数:3
相关论文
共 50 条
  • [1] On graphs in which all neighborhoods of vertices are locally pseudocyclic graphs
    Kabanov, V. V.
    Makhnev, A. A.
    DOKLADY MATHEMATICS, 2014, 89 (01) : 76 - 79
  • [2] Graphs in which the neighborhoods of all vertices are clique extensions of grids
    N. D. Zyulyarkina
    A. A. Makhnev
    D. V. Paduchikh
    Doklady Mathematics, 2007, 76 : 758 - 761
  • [3] Graphs in which the neighborhoods of all vertices are clique extensions of grids
    Zyulyarkina, N. D.
    Makhnev, A. A.
    Paduchikh, D. V.
    DOKLADY MATHEMATICS, 2007, 76 (02) : 758 - 761
  • [4] Graphs in which the neighborhoods of vertices are pseudogeometric graphs for GQ(3, 5)
    A. K. Gutnova
    A. A. Makhnev
    Doklady Mathematics, 2011, 83 : 376 - 379
  • [5] Graphs in which the neighborhoods of vertices are pseudogeometric graphs for GQ(3, 3)
    A. K. Gutnova
    A. A. Makhnev
    Doklady Mathematics, 2010, 82 : 609 - 612
  • [6] Graphs in which neighborhoods of vertices are isomorphic to the Mathieu graph
    Makhnev, A. A.
    Paduchikh, D. V.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2012, 18 (03): : 155 - 163
  • [7] Graphs in which neighborhoods of vertices are isomorphic to the Mathieu graph
    A. A. Makhnev
    D. V. Paduchikh
    Proceedings of the Steklov Institute of Mathematics, 2013, 283 : 91 - 99
  • [8] Graphs in which neighborhoods of vertices are isomorphic to the Mathieu graph
    Makhnev, A. A.
    Paduchikh, D. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 283 : 91 - 99
  • [9] On graphs in which the neighborhoods of vertices are pseudogeometric graphs for pGs − 2(s, t)
    A. K. Gutnova
    A. A. Makhnev
    Doklady Mathematics, 2010, 81 : 222 - 226
  • [10] Graphs in Which the Neighborhoods of Vertices are Pseudogeometric Graphs for GQ(3,5)
    Gutnova, A. K.
    Makhnev, A. A.
    DOKLADY MATHEMATICS, 2011, 83 (03) : 376 - 379