The hypothesis of quark-hadron duality infers that physical observables of nucleons can be described by a complete set of basis states using either hadronic or quark degrees of freedom. In the EG1b experiment in Hall-B at Jefferson Lab, polarized electrons with energies of 1.6, 2.5, 4.2 and 5.7 GeV were scattered from proton and deuteron targets (15NH3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{15}\hbox {NH}_3$$\end{document} and 15ND3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{15}\hbox {ND}_3$$\end{document} dynamically polarized along the beam direction) and detected with CEBAF large acceptance spectrometer. Nucleon spin structure functions g1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$g_1$$\end{document} and g2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$g_2$$\end{document} were measured over a wide kinematic range (0.05GeV2<Q2<5GeV2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.05\,\hbox {GeV}^2< Q^2 <5\,\hbox {GeV}^2$$\end{document} and 1.08GeV<W<3GeV\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1.08\,\hbox {GeV}<{W}< 3\,\hbox {GeV}$$\end{document}). These recently published data strongly constrain parametrization of world data in the resonance region, allowing comprehensive tests of Bloom–Gilman duality for polarized nucleons over a wide kinematic range.