Revisit of Linear-Quadratic Optimal Control

被引:0
|
作者
M. Pachter
机构
[1] Air Force Institute of Technology,Department of Electrical and Computer Engineering
[2] AFIT/ENG,undefined
关键词
Linear quadratic control; Feedback control;
D O I
暂无
中图分类号
学科分类号
摘要
The classical finite-dimensional linear-quadratic optimal control problem is revisited. A new linear-quadratic control problem with linear state penalty terms but without quadratic state penalty terms, is introduced. An optimal control exists and the closed-form optimal solution is given. It is remarkable that feedback action plays no role and state information does not feature in the optimal control. The optimal cost function, rather than being quadratic, is linear in the initial state.
引用
收藏
页码:301 / 314
页数:13
相关论文
共 50 条
  • [1] Revisit of Linear-Quadratic Optimal Control
    Pachter, M.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 140 (02) : 301 - 314
  • [2] LINEAR-QUADRATIC OPTIMAL CONTROL
    COPPEL, WA
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1975, 73 : 271 - 289
  • [3] Linear-quadratic optimal control with integral quadratic constraints
    Lim, AEB
    Liu, YQ
    Teo, KL
    Moore, JB
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 1999, 20 (02): : 79 - 92
  • [4] Inverse Stochastic Optimal Control for Linear-Quadratic Gaussian and Linear-Quadratic Sensorimotor Control Models
    Karg, Philipp
    Stoll, Simon
    Rothfuss, Simon
    Hohmann, Soren
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 2801 - 2808
  • [5] Linear-quadratic optimal control with integral quadratic constraints
    Department of Systems Engineering, Res. Sch. of Info. Sci. and Eng., Australian National University, Canberra, ACT 0200, Australia
    不详
    [J]. Optim Control Appl Methods, 2 (79-92):
  • [6] LINEAR-QUADRATIC OPTIMAL-CONTROL REVISITED
    HAAS, VB
    [J]. SYSTEMS & CONTROL LETTERS, 1984, 5 (01) : 55 - 57
  • [7] Linear-Quadratic Optimal Control in Maximal Coordinates
    Bruedigam, Jan
    Manchester, Zachary
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 9775 - 9781
  • [8] Linear-quadratic and γ-optimal output control laws
    Balandin, D. V.
    Kogan, M. M.
    [J]. AUTOMATION AND REMOTE CONTROL, 2008, 69 (06) : 911 - 919
  • [9] Linear-quadratic and γ-optimal output control laws
    D. V. Balandin
    M. M. Kogan
    [J]. Automation and Remote Control, 2008, 69 : 911 - 919
  • [10] LINEAR-QUADRATIC PROGRAMMING AND OPTIMAL-CONTROL
    ROCKAFELLAR, RT
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1987, 25 (03) : 781 - 814