On existence–uniqueness results for proportional fractional differential equations and incomplete gamma functions

被引:0
|
作者
Zaid Laadjal
Thabet Abdeljawad
Fahd Jarad
机构
[1] Abbes Laghrour University,Department of Mathematics and Computer Sciences, ICOSI Laboratory
[2] Prince Sultan University,Department of Mathematics and General Sciences
[3] China Medical University,Department of Medical Research
[4] Asia University,Department of Computer Science and Information Engineering
[5] Çankaya University,Department of Mathematics
关键词
Incomplete gamma function; Generalized proportional fractional differential equation; Existence; Uniqueness;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we employ the lower regularized incomplete gamma functions to demonstrate the existence and uniqueness of solutions for fractional differential equations involving nonlocal fractional derivatives (GPF derivatives) generated by proportional derivatives of the form 1Dρ=(1−ρ)+ρD,ρ∈[0,1],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ D^{\rho }= (1-\rho )+ \rho D, \quad \rho \in [0,1], $$\end{document} where D is the ordinary differential operator.
引用
收藏
相关论文
共 50 条
  • [1] On existence-uniqueness results for proportional fractional differential equations and incomplete gamma functions
    Laadjal, Zaid
    Abdeljawad, Thabet
    Jarad, Fahd
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [2] Existence and uniqueness results for fractional differential equations with uncertainty
    S Salahshour
    T Allahviranloo
    S Abbasbandy
    D Baleanu
    Advances in Difference Equations, 2012
  • [3] Existence and uniqueness results for fractional differential equations with uncertainty
    Salahshour, S.
    Allahviranloo, T.
    Abbasbandy, S.
    Baleanu, D.
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [4] New Existence and Uniqueness Results for Fractional Differential Equations
    Anber, Ahmed
    Belarbi, Soumia
    Dahmani, Zoubir
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2013, 21 (03): : 33 - 41
  • [5] Some existence and uniqueness results for a class of proportional Liouville-Caputo fractional stochastic differential equations
    Ben Makhlouf, Abdellatif
    Mchiri, Lassaad
    Srivastava, Hari Mohan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 189
  • [6] ON THE EXISTENCE AND UNIQUENESS RESULTS FOR NONLINEAR SEQUENTIAL FRACTIONAL DIFFERENTIAL EQUATIONS
    Fazli, Hossein
    Nieto, Juan J.
    Bahrami, Fariba
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2018, 17 (01) : 36 - 47
  • [7] Existence and Uniqueness Results of Fractional Differential Inclusions and Equations in Sobolev Fractional Spaces
    Meftah, Safia
    Hadjadj, Elhabib
    Biomy, Mohamad
    Yazid, Fares
    AXIOMS, 2023, 12 (11)
  • [8] EXISTENCE AND UNIQUENESS RESULTS FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH BOUNDARY VALUE CONDITIONS
    Lv, Linli
    Wang, JinRong
    Wei, Wei
    OPUSCULA MATHEMATICA, 2011, 31 (04) : 629 - 643
  • [9] Existence and uniqueness results for fractional differential equations with delay and impulsive effects
    Wu, Jun
    Liu, Yicheng
    2010 6TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS NETWORKING AND MOBILE COMPUTING (WICOM), 2010,
  • [10] Some Existence and Uniqueness Results for a Class of Fractional Stochastic Differential Equations
    Kahouli, Omar
    Ben Makhlouf, Abdellatif
    Mchiri, Lassaad
    Kumar, Pushpendra
    Ben Ali, Naim
    Aloui, Ali
    SYMMETRY-BASEL, 2022, 14 (11):