Automatic latent fingerprint identification system using scale and rotation invariant minutiae features

被引:5
|
作者
Deshpande U.U. [1 ]
Malemath V.S. [2 ]
Patil S.M. [2 ]
Chaugule S.V. [2 ]
机构
[1] Department of Electronics and Communication Engineering, KLS Gogte Institute of Technology, Karnataka, Belagavi
[2] Department of Computer Science and Engineering, KLE Dr. M. S. Sheshgiri College of Engineering and Technology, Karnataka, Belagavi
基金
巴西圣保罗研究基金会;
关键词
Clustered latent minutiae pattern; Clustered minutiae; FVC2004; Latent minutiae similarity; NIST SD27;
D O I
10.1007/s41870-020-00508-7
中图分类号
学科分类号
摘要
In this paper, we propose a new clustered minutiae-based scale and rotation invariant fingerprint matching method. The major challenge faced in the existing latent fingerprint identification system is the lack of minutiae features in the fingerprint regions and hence there is a requirement to utilize the existing minutiae arrangements in the regions to identify the query fingerprint. We have clustered minutiae around a reference minutia and generated minutiae invariants to identify the fingerprint. In this paper, we propose two algorithms based on the minutiae neighborhood. To solve the geometrical constraints between the pairs of nearest points around a minutia, we propose the latent minutiae similarity (LMS) algorithm. Based on geometrical arrangements on the set of latent minutiae patterns around a minutia, we propose a clustered latent minutiae pattern (CLMP) algorithm. We test our algorithms on the FVC2004 and NIST SD27 criminal fingerprint databases. Proposed LMS, CLMP algorithms produced the highest 97.5% and 100% of Rank-1 identification accuracy respectively on plain FVC2004 dataset. Whereas, for NIST SD27 latent fingerprint database the proposed LMS, CLMP algorithms produced the highest Rank-1 identification accuracy of 88.8% and 93.80% respectively. Experimental results show significant improvement in the Rank-1 matching accuracy under random fingerprint scale and rotation condition compared to the state-of-the-art algorithms. © 2020, Bharati Vidyapeeth's Institute of Computer Applications and Management.
引用
收藏
页码:1025 / 1039
页数:14
相关论文
共 50 条
  • [1] Latent fingerprint identification using deformable minutiae clustering
    Angel Medina-Perez, Miguel
    Morales Moreno, Aythami
    Ferrer Ballester, Miguel Angel
    Garcia-Borroto, Milton
    Loyola-Gonzalez, Octavio
    Altamirano-Robles, Leopoldo
    NEUROCOMPUTING, 2016, 175 : 851 - 865
  • [2] System authentication using minutiae and fingercode features of fingerprint
    Mane, Satendra H.
    Chandwadkar, Dinesh M.
    Patil, Pradeep M.
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-7, 2006, : 473 - +
  • [3] Fingerprint Subclassification Using Rotation-invariant Features
    A, Yong
    Guo, Tiande
    Wu, Yanping
    Shao, Guangqi
    PROCEEDINGS OF THE 2013 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2013, : 504 - 509
  • [4] Latent Fingerprint Identification System Based on a Local Combination of Minutiae Feature Points
    Deshpande U.U.
    Malemath V.S.
    Patil S.M.
    Chaugule S.V.
    SN Computer Science, 2021, 2 (3)
  • [5] A Fingerprint Verification System using Minutiae and Wavelet based Features
    Khan, Umair Mateen
    Khan, Shoab Ahmed
    Ejaz, Naveed
    Rehman, Riaz Ur
    ICET: 2009 INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES, PROCEEDINGS, 2009, : 291 - +
  • [6] Using weighted minutiae for fingerprint identification
    Lect Notes Comput Sci, (289):
  • [7] An efficient fingerprint identification algorithm based on minutiae and invariant moment
    Jing Sang
    Hongxia Wang
    Qing Qian
    Hanzhou Wu
    Yi Chen
    Personal and Ubiquitous Computing, 2018, 22 : 71 - 80
  • [8] Impact of Minutiae Errors in Latent Fingerprint Identification: Assessment and Prediction
    Loyola-Gonzalez, Octavio
    Ferreira Mehnert, Emilio Francisco
    Morales, Aythami
    Fierrez, Julian
    Medina-Perez, Miguel Angel
    Monroy, Raul
    APPLIED SCIENCES-BASEL, 2021, 11 (09):
  • [9] An efficient fingerprint identification algorithm based on minutiae and invariant moment
    Sang, Jing
    Wang, Hongxia
    Qian, Qing
    Wu, Hanzhou
    Chen, Yi
    PERSONAL AND UBIQUITOUS COMPUTING, 2018, 22 (01) : 71 - 80
  • [10] Fingerprint matching using global minutiae and invariant moments
    Yang, JuCheng
    Shin, JinWook
    Min, ByoungJun
    Lee, JoonWhoan
    Park, DongSun
    Yoon, Sook
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 4, PROCEEDINGS, 2008, : 599 - +