A New Analytic pdf for Simulations of Premixed Turbulent Combustion

被引:0
|
作者
Michael Pfitzner
机构
[1] Bundeswehr University Munich,
来源
关键词
Turbulent premixed combustion; Flamelet pdf; LES combustion subgrid model;
D O I
暂无
中图分类号
学科分类号
摘要
A new reaction rate source term ωm(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _m(c)$$\end{document} for modelling of premixed combustion with a single progress variable c is proposed. ωm(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _m(c)$$\end{document} mimics closely the Arrhenius source term ωA(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _A(c)$$\end{document} for a large range of activation energies and density ratios while admitting analytic evaluation of many quantities of interest. The analytic flame profile cm(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_m(\xi )$$\end{document} very closely approximates the numerically integrated Arrhenius flame profiles cA(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_A(\xi )$$\end{document}. An important feature of cm(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_m(\xi )$$\end{document} is that it is analytically invertible into a ξm(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi _m(c)$$\end{document}. Analytic estimates of the laminar flame Eigenvalue Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda$$\end{document} and of the Le dependence of the laminar flame speed sL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_L$$\end{document} are derived, which are more accurate than classic results based on asymptotic analyses. The flamelet pdf p(c)=1/(Δ∗c∗(1-cm))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(c)=1/(\Delta *c*(1-c^m))$$\end{document} for a flat laminar flame front in a LES cell of width Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta$$\end{document} is derived. The exact mean of the reaction rate ω(c)¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\omega (c)}$$\end{document} is compared to a beta pdf result, which is shown to be inaccurate for large ratios of filter width to flame thickness Δ/δf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta /\delta _f$$\end{document} and particularly for high activation energy flames. For multidimensional flame wrinkling we derive the exact relationship p(c)=p1D(c)I(c)Ξ(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(c)=p_{1D}(c)I(c)\Xi (c)$$\end{document} between the 3D pdf p(c), the 1D flat flame pdf p1D(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{1D}(c)$$\end{document}, a correction factor I(c) for change of inner flame structure and a geometrical wrinkling factor Ξ(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Xi (c)$$\end{document}. We show that the c dependence of these quantities cannot be neglected for small Δ/δf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta /\delta _f$$\end{document}. A simple model of a sinusoidally wrinkled flame front qualitatively demonstrates the effect of flame wrinkling on p(c). We show that for large Δ/δf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta /\delta _f$$\end{document}, a wrinkling of the reaction zone almost constantly increases p(c) in the reaction zone by a wrinkling factor Ξ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Xi ^*$$\end{document} (defined for the surface of the isosurface of maximum heat release) while reducing it near c=0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=0,1$$\end{document} as required for normalisation of p(c). The 1D p(c) evaluated using a reduced filter width Δ′=Δ/Ξ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta '=\Delta /\Xi ^*$$\end{document} may be a good approximation of the wrinkled flame pdf for evaluation of ω(c)¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\omega (c)}$$\end{document} for such cases.
引用
收藏
页码:1213 / 1239
页数:26
相关论文
共 50 条
  • [1] A New Analytic pdf for Simulations of Premixed Turbulent Combustion
    Pfitzner, Michael
    [J]. FLOW TURBULENCE AND COMBUSTION, 2021, 106 (04) : 1213 - 1239
  • [2] A PDF combustion model for turbulent premixed flames
    Zoller, Benjamin T.
    Hack, Mathias L.
    Jenny, Patrick
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2013, 34 : 1421 - 1428
  • [3] PDF modeling and simulation of premixed turbulent combustion
    Stoellinger, Michael
    Heinz, Stefan
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2008, 14 (04): : 343 - 377
  • [4] A presumed Pdf analysis of partially premixed turbulent combustion
    Libby, PA
    Williams, FA
    [J]. COMBUSTION SCIENCE AND TECHNOLOGY, 2000, 161 : 351 - 390
  • [5] Micromixing Models for PDF Simulations of Turbulent Premixed Flames
    Ren, Zhuyin
    Kuron, Mike
    Zhao, Xinyu
    Lu, Tianfeng
    Hawkes, Evatt
    Kolla, Hemanth
    Chen, Jacqueline H.
    [J]. COMBUSTION SCIENCE AND TECHNOLOGY, 2019, 191 (08) : 1430 - 1455
  • [6] A unified PDF-flamelet model for turbulent premixed combustion
    Mura, A
    Galzin, F
    Borghi, R
    [J]. COMBUSTION SCIENCE AND TECHNOLOGY, 2003, 175 (09) : 1573 - 1609
  • [7] Numerical simulations of partially premixed turbulent combustion
    Haworth, DC
    Jiménez, C
    Cuenot, B
    Poinsot, T
    Blint, RJ
    [J]. IUTAM SYMPOSIUM ON TURBULENT MIXING AND COMBUSTION, 2002, 70 : 427 - 437
  • [8] PDF simulations of turbulent combustion incorporating detailed chemistry
    Saxena, V
    Pope, SB
    [J]. COMBUSTION AND FLAME, 1999, 117 (1-2) : 340 - 350
  • [9] Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF
    Fiorina, B
    Gicquel, O
    Vervisch, L
    Carpentier, S
    Darabiha, N
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2005, 30 : 867 - 874
  • [10] Finite rate chemistry and presumed PDF models for premixed turbulent combustion
    Bray, K. N. C.
    Champion, M.
    Libby, P. A.
    Swaminathan, N.
    [J]. COMBUSTION AND FLAME, 2006, 146 (04) : 665 - 673