A New Analytic pdf for Simulations of Premixed Turbulent Combustion

被引:0
|
作者
Michael Pfitzner
机构
[1] Bundeswehr University Munich,
来源
关键词
Turbulent premixed combustion; Flamelet pdf; LES combustion subgrid model;
D O I
暂无
中图分类号
学科分类号
摘要
A new reaction rate source term ωm(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _m(c)$$\end{document} for modelling of premixed combustion with a single progress variable c is proposed. ωm(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _m(c)$$\end{document} mimics closely the Arrhenius source term ωA(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _A(c)$$\end{document} for a large range of activation energies and density ratios while admitting analytic evaluation of many quantities of interest. The analytic flame profile cm(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_m(\xi )$$\end{document} very closely approximates the numerically integrated Arrhenius flame profiles cA(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_A(\xi )$$\end{document}. An important feature of cm(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_m(\xi )$$\end{document} is that it is analytically invertible into a ξm(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi _m(c)$$\end{document}. Analytic estimates of the laminar flame Eigenvalue Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda$$\end{document} and of the Le dependence of the laminar flame speed sL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_L$$\end{document} are derived, which are more accurate than classic results based on asymptotic analyses. The flamelet pdf p(c)=1/(Δ∗c∗(1-cm))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(c)=1/(\Delta *c*(1-c^m))$$\end{document} for a flat laminar flame front in a LES cell of width Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta$$\end{document} is derived. The exact mean of the reaction rate ω(c)¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\omega (c)}$$\end{document} is compared to a beta pdf result, which is shown to be inaccurate for large ratios of filter width to flame thickness Δ/δf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta /\delta _f$$\end{document} and particularly for high activation energy flames. For multidimensional flame wrinkling we derive the exact relationship p(c)=p1D(c)I(c)Ξ(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(c)=p_{1D}(c)I(c)\Xi (c)$$\end{document} between the 3D pdf p(c), the 1D flat flame pdf p1D(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{1D}(c)$$\end{document}, a correction factor I(c) for change of inner flame structure and a geometrical wrinkling factor Ξ(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Xi (c)$$\end{document}. We show that the c dependence of these quantities cannot be neglected for small Δ/δf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta /\delta _f$$\end{document}. A simple model of a sinusoidally wrinkled flame front qualitatively demonstrates the effect of flame wrinkling on p(c). We show that for large Δ/δf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta /\delta _f$$\end{document}, a wrinkling of the reaction zone almost constantly increases p(c) in the reaction zone by a wrinkling factor Ξ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Xi ^*$$\end{document} (defined for the surface of the isosurface of maximum heat release) while reducing it near c=0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=0,1$$\end{document} as required for normalisation of p(c). The 1D p(c) evaluated using a reduced filter width Δ′=Δ/Ξ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta '=\Delta /\Xi ^*$$\end{document} may be a good approximation of the wrinkled flame pdf for evaluation of ω(c)¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\omega (c)}$$\end{document} for such cases.
引用
收藏
页码:1213 / 1239
页数:26
相关论文
共 50 条
  • [1] A New Analytic pdf for Simulations of Premixed Turbulent Combustion
    Pfitzner, Michael
    FLOW TURBULENCE AND COMBUSTION, 2021, 106 (04) : 1213 - 1239
  • [2] A PDF combustion model for turbulent premixed flames
    Zoller, Benjamin T.
    Hack, Mathias L.
    Jenny, Patrick
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2013, 34 : 1421 - 1428
  • [3] PDF modeling and simulation of premixed turbulent combustion
    Stoellinger, Michael
    Heinz, Stefan
    MONTE CARLO METHODS AND APPLICATIONS, 2008, 14 (04): : 343 - 377
  • [4] A presumed Pdf analysis of partially premixed turbulent combustion
    Libby, PA
    Williams, FA
    COMBUSTION SCIENCE AND TECHNOLOGY, 2000, 161 : 351 - 390
  • [5] Micromixing Models for PDF Simulations of Turbulent Premixed Flames
    Ren, Zhuyin
    Kuron, Mike
    Zhao, Xinyu
    Lu, Tianfeng
    Hawkes, Evatt
    Kolla, Hemanth
    Chen, Jacqueline H.
    COMBUSTION SCIENCE AND TECHNOLOGY, 2019, 191 (08) : 1430 - 1455
  • [6] A unified PDF-flamelet model for turbulent premixed combustion
    Mura, A
    Galzin, F
    Borghi, R
    COMBUSTION SCIENCE AND TECHNOLOGY, 2003, 175 (09) : 1573 - 1609
  • [7] Numerical simulations of partially premixed turbulent combustion
    Haworth, DC
    Jiménez, C
    Cuenot, B
    Poinsot, T
    Blint, RJ
    IUTAM SYMPOSIUM ON TURBULENT MIXING AND COMBUSTION, 2002, 70 : 427 - 437
  • [8] PDF simulations of turbulent combustion incorporating detailed chemistry
    Saxena, V
    Pope, SB
    COMBUSTION AND FLAME, 1999, 117 (1-2) : 340 - 350
  • [9] Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF
    Fiorina, B
    Gicquel, O
    Vervisch, L
    Carpentier, S
    Darabiha, N
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2005, 30 (01) : 867 - 874
  • [10] Finite rate chemistry and presumed PDF models for premixed turbulent combustion
    Bray, K. N. C.
    Champion, M.
    Libby, P. A.
    Swaminathan, N.
    COMBUSTION AND FLAME, 2006, 146 (04) : 665 - 673