Projective spaces of aC*-algebra

被引:0
|
作者
E. Andruchow
G. Corach
D. Stojanoff
机构
[1] UNGS,Instituto de Ciencias
[2] FCEN-UBA,Depto. de Matemática
[3] Instituto Argentino de Matemática,Depto. de Matemática
[4] FCE-UNLP,undefined
[5] Instituto Argentino de Matemática,undefined
来源
Integral Equations and Operator Theory | 2000年 / 37卷
关键词
Primary 46L05, 58B20;
D O I
暂无
中图分类号
学科分类号
摘要
Based on the projective matrix spaces studied by B. Schwarz and A. Zaks, we study the notion of projective space associated to a C*-algebraA with a fixed projectionp. The resulting spaceP(p) admits a rich geometrical structure as a holomorphic manifold and a homogeneous reductive space of the invertible group ofA. Moreover, several metrics (chordal, spherical, pseudo-chordal, non-Euclidean-in Schwarz-Zaks terminology) are considered, allowing a comparison amongP(p), the Grassmann manifold ofA and the space of positive elements which are unitary with respect to the bilinear form induced by the reflection ε=2p−1. Among several metrical results, we prove that geodesics are unique and of minimal length when measured with the spherical and non-Euclidean metrics.
引用
收藏
页码:143 / 168
页数:25
相关论文
共 50 条