Wind farm layout optimization through optimal wind turbine placement using a hybrid particle swarm optimization and genetic algorithm

被引:0
|
作者
Tarique Anwar Qureshi
Vilas Warudkar
机构
[1] M.A.N.I.T,Department of Mechanical Engineering
关键词
Wind turbine; Wind farm; Particle swarm optimization; Genetic algorithm; Wind farm layout optimization;
D O I
暂无
中图分类号
学科分类号
摘要
The placement and configuration of wind turbines (WTs) are the key factors in determining the performance and energy output of a wind farm (WF). This involves considering various elements such as wind speed, wind direction, and the interspacing between turbines in the design process. To achieve an optimized and consistent wind farm layout optimization (WFLO) for maximum output power, a novel hybrid algorithm hybrid particle swarm optimization and genetic algorithm (HPSOGA), combining particle swarm optimization (PSO) and genetic algorithm (GA), is proposed. HPSOGA can effectively handle problems with multiple local optima, as PSO explores multiple regions and GA refines solutions found by PSO. The framework has two phases, where PSO improves initial parameters in the first phase, and parameters are adjusted in the second phase for improved fitness. The wake effect is analyzed using the Jenson-Wake model, and the objective function considers the total cost of WTs and the power output of the WF. The interspacing of WTs is evaluated by the rule of thumb. HPSOGA outperforms other methods such as GA, BPSO-TVAC, L-SHADE, BRCGA, and EO-PS, producing better results in terms of total output power generation. The simulation results validate the reliability of HPSOGA in WFLO.
引用
收藏
页码:77436 / 77452
页数:16
相关论文
共 50 条
  • [1] Wind farm layout optimization through optimal wind turbine placement using a hybrid particle swarm optimization and genetic algorithm
    Qureshi, Tarique Anwar
    Warudkar, Vilas
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (31) : 77436 - 77452
  • [2] Optimal Placement of Wind Turbines in Wind Farm Layout Using Particle Swarm Optimization
    Philip Asaah
    Lili Hao
    Jing Ji
    [J]. Journal of Modern Power Systems and Clean Energy, 2021, 9 (02) : 367 - 375
  • [3] Optimal Placement of Wind Turbines in Wind Farm Layout Using Particle Swarm Optimization
    Asaah, Philip
    Hao, Lili
    Ji, Jing
    [J]. JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2021, 9 (02) : 367 - 375
  • [4] Offshore wind farm layout optimization using particle swarm optimization
    Pillai A.C.
    Chick J.
    Johanning L.
    Khorasanchi M.
    [J]. Journal of Ocean Engineering and Marine Energy, 2018, 4 (01) : 73 - 88
  • [5] COMPARISON OF OFFSHORE WIND FARM LAYOUT OPTIMIZATION USING A GENETIC ALGORITHM AND A PARTICLE SWARM OPTIMIZER
    Pillai, Ajit C.
    Chick, John
    Johanning, Lars
    Khorasanchi, Mahdi
    Barbouchi, Sami
    [J]. PROCEEDINGS OF THE ASME 35TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING , 2016, VOL 6, 2016,
  • [6] Wind Farm Layout Design using Modified Particle Swarm Optimization Algorithm
    Rehman, Shafiqur
    Ali, S. S. A.
    [J]. 2015 6TH INTERNATIONAL RENEWABLE ENERGY CONGRESS (IREC), 2015,
  • [7] Wind Farm Layout Optimization with Different Hub Heights in Manjil Wind Farm Using Particle Swarm Optimization
    Yeghikian, Menova
    Ahmadi, Abolfazl
    Dashti, Reza
    Esmaeilion, Farbod
    Mahmoudan, Alireza
    Hoseinzadeh, Siamak
    Garcia, Davide Astiaso
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (20):
  • [8] Particle swarm optimization of a wind farm layout with active control of turbine yaws
    Song, Jeonghwan
    Kim, Taewan
    You, Donghyun
    [J]. RENEWABLE ENERGY, 2023, 206 : 738 - 747
  • [9] Optimal Dispatch of Wind Farm Based on Particle Swarm Optimization Algorithm
    Zhu, Xiaorong
    Zhang, Wentong
    Wang, Yi
    Liang, Haifeng
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2012,
  • [10] Particle Swarm Optimization (PSO) algorithm for wind farm optimal design
    Aristidis, Vlachos
    Maria, Papageorgaki
    Christos, Lytras
    [J]. INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, 2010, 5 (01) : 53 - 58