Wiener index of generalized odd complete graphs

被引:0
|
作者
KM. Kathiresan
C. Parameswaran
机构
[1] Ayya Nadar Janaki Ammal College,Centre for Research and Post Graduate Studies in Mathematics
关键词
Generalized odd complete graphs; Wiener index; odd graphs; 05C12;
D O I
暂无
中图分类号
学科分类号
摘要
The Wiener index W(G) of a graph G is the sum of distances between all pairs of vertices of a connected graph. Motivated by the definition of an odd graph, in this paper we define generalized odd complete graphs and we obtain an explicit expression for the Wiener index of the generalized odd complete graphs and hence we derive the Wiener index of complete graphs with odd number of vertices.
引用
收藏
页码:301 / 303
页数:2
相关论文
共 50 条
  • [1] Wiener index of generalized odd complete graphs
    Kathiresan, Km
    Parameswaran, C.
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (02): : 301 - 303
  • [2] On the generalized Wiener polarity index for some classes of graphs
    Bielak, Halina
    Dabrowska, Kinga
    Wolska, Katarzyna
    [J]. PROCEEDINGS OF THE 2015 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2015, 5 : 483 - 487
  • [3] Extremal Wiener Index of Graphs with Given Number of Vertices of Odd Degree
    Su, Zhenhua
    Tang, Zikai
    Deng, Hanyuan
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2023, 89 (02) : 503 - 516
  • [4] The hyper-Wiener index of the generalized hierarchical product of graphs
    Eliasi, Mehdi
    Iranmanesh, Ali
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (08) : 866 - 871
  • [5] On Wiener and terminal Wiener index of graphs
    Babujee, J. Baskar
    Senbagamalar, J.
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2015, 8 (05)
  • [6] On the Wiener Index of Graphs
    Wu, Xiaoying
    Liu, Huiqing
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (02) : 535 - 544
  • [7] On the Wiener Index of Graphs
    Xiaoying Wu
    Huiqing Liu
    [J]. Acta Applicandae Mathematicae, 2010, 110 : 535 - 544
  • [8] An odd characterization of the generalized odd graphs
    van Dam, Edwin R.
    Haemers, Willem H.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2011, 101 (06) : 486 - 489
  • [9] Spectrum, distance spectrum, and Wiener index of wreath products of complete graphs
    Donno, Alfredo
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2017, 13 (01) : 207 - 225
  • [10] Wiener Index of Graphs and Their Line Graphs
    Su X.
    Wang L.
    Gao Y.
    [J]. Journal of the Operations Research Society of China, 2013, 1 (3) : 393 - 403