Interpolation of sparse high-dimensional data

被引:0
|
作者
Thomas C. H. Lux
Layne T. Watson
Tyler H. Chang
Yili Hong
Kirk Cameron
机构
[1] Virginia Polytechnic Institute and State University (VPI,
[2] SU),undefined
来源
Numerical Algorithms | 2021年 / 88卷
关键词
Approximation; Regression; Interpolation; High dimension; Error bound;
D O I
暂无
中图分类号
学科分类号
摘要
Increases in the quantity of available data have allowed all fields of science to generate more accurate models of multivariate phenomena. Regression and interpolation become challenging when the dimension of data is large, especially while maintaining tractable computational complexity. Regression is a popular approach to solving approximation problems with high dimension; however, there are often advantages to interpolation. This paper presents a novel and insightful error bound for (piecewise) linear interpolation in arbitrary dimension and contrasts the performance of some interpolation techniques with popular regression techniques. Empirical results demonstrate the viability of interpolation for moderately high-dimensional approximation problems, and encourage broader application of interpolants to multivariate approximation in science.
引用
收藏
页码:281 / 313
页数:32
相关论文
共 50 条
  • [1] Interpolation of sparse high-dimensional data
    Lux, Thomas C. H.
    Watson, Layne T.
    Chang, Tyler H.
    Hong, Yili
    Cameron, Kirk
    [J]. NUMERICAL ALGORITHMS, 2021, 88 (01) : 281 - 313
  • [2] On the anonymization of sparse high-dimensional data
    Ghinita, Gabriel
    Tao, Yufei
    Kalnis, Panos
    [J]. 2008 IEEE 24TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, VOLS 1-3, 2008, : 715 - +
  • [3] PCA learning for sparse high-dimensional data
    Hoyle, DC
    Rattray, M
    [J]. EUROPHYSICS LETTERS, 2003, 62 (01): : 117 - 123
  • [4] Similarity Learning for High-Dimensional Sparse Data
    Liu, Kuan
    Bellet, Aurelien
    Sha, Fei
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 653 - 662
  • [5] Sparse PCA for High-Dimensional Data With Outliers
    Hubert, Mia
    Reynkens, Tom
    Schmitt, Eric
    Verdonck, Tim
    [J]. TECHNOMETRICS, 2016, 58 (04) : 424 - 434
  • [6] Group Learning for High-Dimensional Sparse Data
    Cherkassky, Vladimir
    Chen, Hsiang-Han
    Shiao, Han-Tai
    [J]. 2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [7] High-Dimensional Adaptive Sparse Polynomial Interpolation and Applications to Parametric PDEs
    Abdellah Chkifa
    Albert Cohen
    Christoph Schwab
    [J]. Foundations of Computational Mathematics, 2014, 14 : 601 - 633
  • [8] High-Dimensional Adaptive Sparse Polynomial Interpolation and Applications to Parametric PDEs
    Chkifa, Abdellah
    Cohen, Albert
    Schwab, Christoph
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2014, 14 (04) : 601 - 633
  • [9] Principal component analysis for sparse high-dimensional data
    Raiko, Tapani
    Ilin, Alexander
    Karhunen, Juha
    [J]. NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 566 - 575
  • [10] Sparse kernel methods for high-dimensional survival data
    Evers, Ludger
    Messow, Claudia-Martina
    [J]. BIOINFORMATICS, 2008, 24 (14) : 1632 - 1638