The Baker–Campbell–Hausdorff formula via mould calculus

被引:0
|
作者
Yong Li
David Sauzin
Shanzhong Sun
机构
[1] Capital Normal University,Department of Mathematics
[2] CNRS UMR 8028 IMCCE,undefined
来源
关键词
Baker-Campbell-Hausdorff theorem; Dynkin formula; Mould calculus; 22E15; 17B05; 17B60; 17B81;
D O I
暂无
中图分类号
学科分类号
摘要
The well-known Baker–Campbell–Hausdorff theorem in Lie theory says that the logarithm of a noncommutative product eXeY\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {e}^X \text {e}^Y$$\end{document} can be expressed in terms of iterated commutators of X and Y. This paper provides a gentle introduction to Écalle’s mould calculus and shows how it allows for a short proof of the above result, together with the classical Dynkin (Dokl Akad Nauk SSSR (NS) 57:323–326, 1947) explicit formula for the logarithm, as well as another formula recently obtained by Kimura (Theor Exp Phys 4:041A03, 2017) for the product of exponentials itself. We also analyse the relation between the two formulas and indicate their mould calculus generalization to a product of more exponentials.
引用
收藏
页码:725 / 746
页数:21
相关论文
共 50 条