Revealing CO2 dissociation pathways at vicinal copper (997) interfaces

被引:0
|
作者
Jeongjin Kim
Youngseok Yu
Tae Won Go
Jean-Jacques Gallet
Fabrice Bournel
Bongjin Simon Mun
Jeong Young Park
机构
[1] Korea Advanced Institute of Science and Technology (KAIST),Department of Chemistry
[2] Gwangju Institute of Science and Technology (GIST),Department of Physics and Photon Science, School of Physics and Chemistry
[3] GIST,Center for Advanced X
[4] CNRS,ray Science
[5] Sorbonne Université,Laboratoire de Chimie Physique
[6] Synchrotron SOLEIL,Matière et Rayonnement
[7] Brookhaven National Laboratory,Chemistry Division
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Size- and shape-tailored copper (Cu) nanocrystals can offer vicinal planes for facile carbon dioxide (CO2) activation. Despite extensive reactivity benchmarks, a correlation between CO2 conversion and morphology structure has not yet been established at vicinal Cu interfaces. Herein, ambient pressure scanning tunneling microscopy reveals step-broken Cu nanocluster evolutions on the Cu(997) surface under 1 mbar CO2(g). The CO2 dissociation reaction produces carbon monoxide (CO) adsorbate and atomic oxygen (O) at Cu step-edges, inducing complicated restructuring of the Cu atoms to compensate for increased surface chemical potential energy at ambient pressure. The CO molecules bound at under-coordinated Cu atoms contribute to the reversible Cu clustering with the pressure gap effect, whereas the dissociated oxygen leads to irreversible Cu faceting geometries. Synchrotron-based ambient pressure X-ray photoelectron spectroscopy identifies the chemical binding energy changes in CO-Cu complexes, which proves the characterized real-space evidence for the step-broken Cu nanoclusters under CO(g) environments. Our in situ surface observations provide a more realistic insight into Cu nanocatalyst designs for efficient CO2 conversion to renewable energy sources during C1 chemical reactions.
引用
收藏
相关论文
共 50 条
  • [1] Revealing CO2 dissociation pathways at vicinal copper (997) interfaces
    Kim, Jeongjin
    Yu, Youngseok
    Go, Tae Won
    Gallet, Jean-Jacques
    Bournel, Fabrice
    Mun, Bongjin Simon
    Park, Jeong Young
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [2] Low-temperature dissociation of CO2 molecules on vicinal Cu surfaces
    Koitaya, Takanori
    Shiozawa, Yuichiro
    Yoshikura, Yuki
    Mukai, Kozo
    Yoshimoto, Shinya
    Yoshinobu, Jun
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (12) : 9226 - 9233
  • [3] A STUDY ON CO2 DISSOCIATION ON A STEPPED (332) COPPER SURFACE
    BONICKE, IA
    KIRSTEIN, W
    THIEME, F
    [J]. SURFACE SCIENCE, 1994, 307 : 177 - 181
  • [4] Electrochemical interfaces during CO2 reduction on copper electrodes
    Ligt, Bianca
    Hensen, Emiel J. M.
    Figueiredo, Marta Costa
    [J]. CURRENT OPINION IN ELECTROCHEMISTRY, 2023, 41
  • [5] A miniaturized amperometric CO2 sensor based on dissociation of copper complexes
    Fasching, R
    Kohl, F
    Urban, G
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2003, 93 (1-3) : 197 - 204
  • [6] The CO2 dissociation mechanism on the small copper clusters—the influence of geometry
    Oskar Klaja
    Jerzy Szczygieł
    Janusz Trawczyński
    Bartłomiej M. Szyja
    [J]. Theoretical Chemistry Accounts, 2017, 136
  • [7] ELECTRIC DISSOCIATION OF CO2
    BARTON, MJ
    VONENGEL, A
    [J]. PHYSICS LETTERS A, 1970, A 32 (03) : 173 - &
  • [8] Revealing the dependence of CO2 activation on hydrogen dissociation ability over supported nickel catalysts
    Pu, Tiancheng
    Shen, Liang
    Xu, Jing
    Peng, Chong
    Zhu, Minghui
    [J]. AICHE JOURNAL, 2022, 68 (01)
  • [9] The CO2 dissociation mechanism on the small copper clusters-the influence of geometry
    Klaja, Oskar
    Szczygiel, Jerzy
    Trawczynski, Janusz
    Szyja, Bartlomiej M.
    [J]. THEORETICAL CHEMISTRY ACCOUNTS, 2017, 136 (09)
  • [10] Copper/Polyaniline Interfaces Confined CO2 Electroreduction for Selective Hydrocarbon Production
    Xu, Yeqing
    Zhao, Yong
    Kochubei, Alena
    Lee, Chong-Yong
    Wagner, Pawel
    Chen, Zhiqi
    Jiang, Yijiao
    Yan, Wei
    Wallace, Gordon G.
    Wang, Caiyun
    [J]. CHEMSUSCHEM, 2024,