Determination of a seismometer’s generator constant, azimuth, and orthogonality in three-dimensional space using a reference seismometer

被引:0
|
作者
Izidor Tasič
Franc Runovc
机构
[1] Slovenian Environment Agency,Faculty of Natural Sciences and Engineering
[2] University of Ljubljana,undefined
来源
Journal of Seismology | 2013年 / 17卷
关键词
Seismometer parameters’ verification; Seismometer orientation; Single reference instrument; Euler angles and transformation; Orthogonality deviation; Generator constant; Transformation matrix;
D O I
暂无
中图分类号
学科分类号
摘要
To accurately predict the performance of a seismometer, knowledge of its key parameters is required. We present a new method that requires a single reference instrument to estimate some of the important parameters of the seismometer, such as the ratio of the generator constants, the orthogonality deviation, and the rotation in space and in the horizontal plane with regards to the reference instrument. The procedure is performed in the three-dimensional spaces where the Euler rotation theorem is applied in order to define a transformation, which is then used to transform the detection of the reference seismometer as well as the detection of the instrument under test. The estimated transformation matrix is defined as an upper triangular matrix, where its elements contain the information regarding the parameters of the tested seismometer, which are then evaluated using the Euler angles. The new method has been verified on a pair consisting of two STS-2 seismometers and on a pair consisting of one CMG-3T and one STS-2 seismometer.
引用
收藏
页码:807 / 817
页数:10
相关论文
共 50 条
  • [1] Determination of a seismometer's generator constant, azimuth, and orthogonality in three-dimensional space using a reference seismometer
    Tasic, Izidor
    Runovc, Franc
    [J]. JOURNAL OF SEISMOLOGY, 2013, 17 (02) : 807 - 817
  • [2] Analysis of clock drift based on a three-dimensional controlled-source ocean bottom seismometer experiment
    Zhang, Jiazheng
    Zhao, Minghui
    Yao, Yongjian
    Qiu, Xuelin
    [J]. GEOPHYSICAL PROSPECTING, 2024, 72 (04) : 1312 - 1321
  • [3] Spatial term apprehension with a reference object's rotation in three-dimensional space
    Kojima, Takatsugu
    Kusumi, Takashi
    [J]. COGNITIVE PROCESSING, 2008, 9 (02) : 107 - 119
  • [4] Spatial term apprehension with a reference object’s rotation in three-dimensional space
    Takatsugu Kojima
    Takashi Kusumi
    [J]. Cognitive Processing, 2008, 9 : 107 - 119
  • [5] Three-Dimensional Target Motion Analysis Using Azimuth/Elevation Angles
    Badriasl, Laleh
    Dogancay, Kutluyil
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2014, 50 (04) : 3178 - 3194
  • [6] Maxwell's equations in three-dimensional space
    Bylok, TZ
    [J]. CAUSALITY AND LOCALITY IN MODERN PHYSICS, 1998, 97 : 79 - 86
  • [7] Determination of a reference system for the three-dimensional study of the glenohumeral relationship
    Verstraeten, Tom R. G. M.
    Deschepper, Ellen
    Jacxsens, Matthijs
    Walravens, Stig
    De Coninck, Brecht
    Pouliart, Nicole
    De Wilde, Lieven F.
    [J]. SKELETAL RADIOLOGY, 2013, 42 (08) : 1061 - 1071
  • [8] Determination of a reference system for the three-dimensional study of the glenohumeral relationship
    Tom R. G. M. Verstraeten
    Ellen Deschepper
    Matthijs Jacxsens
    Stig Walravens
    Brecht De Coninck
    Nicole Pouliart
    Lieven F. De Wilde
    [J]. Skeletal Radiology, 2013, 42 : 1061 - 1071
  • [9] Surfaces with one constant principal curvature in three-dimensional space forms
    Anciaux H.
    [J]. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2015, 56 (2): : 641 - 653
  • [10] Allocentric and egocentric reference frames in the processing of three-dimensional haptic space
    Robert Volcic
    Astrid M. L. Kappers
    [J]. Experimental Brain Research, 2008, 188 : 199 - 213