On the marginally trapped surfaces in 4-dimensional space-times with finite type Gauss map

被引:0
|
作者
Nurettin Cenk Turgay
机构
[1] Istanbul Technical University,Department of Mathematics, Faculty of Science and Letters
来源
关键词
Minkowski space-time; Marginally trapped surface; Finite type Gauss map; De Sitter space-time; 53B25; 53C50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we work on the marginally trapped surfaces in the 4-dimensional Minkowski, de Sitter and anti-de Sitter space-times. We obtain the complete classification of the marginally trapped surfaces in the Minkowski space-time with pointwise 1-type Gauss map. Further, we give a construction of a marginally trapped surface with 1-type Gauss map with a given boundary curve. We also state some explicit examples. We also prove that a marginally trapped surface in the de Sitter space-time S14(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb S^4_1(1)$$\end{document} or anti-de Sitter space-time H14(-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb H^4_1(-1)$$\end{document} has pointwise 1-type Gauss map if and only if its mean curvature vector is parallel. Moreover, we obtain that there exists no marginally trapped surface in S14(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb S^4_1(1)$$\end{document} or H14(-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb H^4_1(-1)$$\end{document} with harmonic Gauss map.
引用
收藏
相关论文
共 50 条