Well-behaved Epireflections for Kan Extensions

被引:0
|
作者
João J. Xarez
机构
[1] Universidade de Aveiro,Departamento de Matemática
来源
关键词
Kan extensions; Cogenerating set; Epireflection; Stable units; Prefactorization; Monotone-light factorization; Descent theory; Galois theory; Simplicial set; Algebraic theory; 18A40; 18A32; 12F10; 18G30; 55U10; 14K05;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K:\mathbb{B}\rightarrow \mathbb{A}$\end{document} be a functor such that the image of the objects in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{B}$\end{document} is a cogenerating set of objects for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{A}$\end{document}. Then, the right Kan extensions adjunction \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{Set}^K\dashv Ran_K$\end{document} induces necessarily an epireflection with stable units and a monotone-light factorization. This result follows from the one stating that an adjunction produces an epireflection in a canonical way, provided there exists a prefactorization system which factorizes all of its unit morphisms through epimorphisms. The stable units property, for the so obtained epireflections, is thereafter equivalently restated in such a manner it is easily recognizable in the examples. Furthermore, having stable units, there is a strong but quite simple sufficient condition for the existence of an associated monotone-light factorization, which has proved to be fruitful.
引用
收藏
页码:219 / 230
页数:11
相关论文
共 50 条
  • [1] Well-behaved Epireflections for Kan Extensions
    Xarez, Joao J.
    [J]. APPLIED CATEGORICAL STRUCTURES, 2010, 18 (02) : 219 - 230
  • [2] Preservation under extensions on well-behaved finite structures
    Atserias, A
    Dawar, A
    Grohe, M
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2005, 3580 : 1437 - 1449
  • [3] PRESERVATION UNDER EXTENSIONS ON WELL-BEHAVED FINITE STRUCTURES
    Atserias, Albert
    Dawar, Anuj
    Grohe, Martin
    [J]. SIAM JOURNAL ON COMPUTING, 2008, 38 (04) : 1364 - 1381
  • [4] WELL-BEHAVED EYES
    ADLER, P
    [J]. NEW SCIENTIST, 1994, 142 (1919) : 43 - 43
  • [5] THE WELL-BEHAVED SIMULATOR
    BERESFORD, R
    [J]. VLSI SYSTEMS DESIGN, 1987, 8 (02): : 8 - 8
  • [6] THE WELL-BEHAVED DOG
    Alpi, Kristine M.
    Sherman, Barbara L.
    [J]. LIBRARY JOURNAL, 2008, 133 (18) : 38 - 41
  • [7] A Well-Behaved Librarian
    Berry, John N., III
    [J]. LIBRARY JOURNAL, 2010, 135 (03) : 10 - 10
  • [8] Lagrange: A Well-Behaved Function
    Harris, Benjamin
    [J]. MATHEMATICS ENTHUSIAST, 2007, 4 (01): : 128 - 137
  • [9] Well-behaved cash flows
    Saak, A
    Hennessy, DA
    [J]. ECONOMICS LETTERS, 2001, 73 (01) : 81 - 88
  • [10] WELL-BEHAVED BASIS AND LR ARRAYS
    林东岱
    [J]. Acta Mathematicae Applicatae Sinica, 1995, (03) : 300 - 307