Some exact values of the Harborth constant and its plus-minus weighted analogue

被引:0
|
作者
Luz E. Marchan
Oscar Ordaz
Dennys Ramos
Wolfgang A. Schmid
机构
[1] Universidad Centroccidental Lisandro Alvarado,Departamento de Matemáticas, Decanato de Ciencias y Tecnologías
[2] Universidad Central de Venezuela,Escuela de Matemáticas y Laboratorio MoST, Centro ISYS, Facultad de Ciencias
[3] Université Paris 13,undefined
[4] Sorbonne Paris Cité,undefined
[5] LAGA,undefined
[6] CNRS,undefined
[7] UMR 7539,undefined
[8] Université Paris 8,undefined
来源
Archiv der Mathematik | 2013年 / 101卷
关键词
11B30; 11B75; 20K01; Finite abelian group; Weighted subsum; Zero-sum problem;
D O I
暂无
中图分类号
学科分类号
摘要
The Harborth constant of a finite abelian group is the smallest integer ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ell}$$\end{document} such that each subset of G of cardinality ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ell}$$\end{document} has a subset of cardinality equal to the exponent of the group whose elements sum to the neutral element of the group. The plus-minus weighted analogue of this constant is defined in the same way except that instead of considering the sum of all elements of the subset, one can choose to add either the element or its inverse. We determine these constants for certain groups, mainly groups that are the direct sum of a cyclic group and a group of order 2. Moreover, we contrast these results with existing results and conjectures on these problems.
引用
收藏
页码:501 / 512
页数:11
相关论文
共 5 条
  • [1] Some exact values of the Harborth constant and its plus-minus weighted analogue
    Marchan, Luz E.
    Ordaz, Oscar
    Ramos, Dennys
    Schmid, Wolfgang A.
    [J]. ARCHIV DER MATHEMATIK, 2013, 101 (06) : 501 - 512
  • [2] Remarks on the plus-minus weighted Davenport constant
    Marchan, Luz E.
    Ordaz, Oscar
    Schmid, Wolfgang A.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (05) : 1219 - 1239
  • [3] ON MONOIDS OF PLUS-MINUS WEIGHTED ZERO-SUM SEQUENCES: THE ISOMORPHISM PROBLEM AND THE CHARACTERIZATION PROBLEM
    Fabsits, Florin
    Geroldinger, Alfred
    Reinhart, Andreas
    Zhong, Qinghai
    [J]. JOURNAL OF COMMUTATIVE ALGEBRA, 2024, 16 (01) : 1 - 23
  • [4] On the Best Linear Methods of Approximation and the Exact Values of Widths for Some Classes of Analytic Functions in the Weighted Bergman Space
    M. R. Langarshoev
    [J]. Ukrainian Mathematical Journal, 2016, 67 : 1537 - 1551
  • [5] On the Best Linear Methods of Approximation and the Exact Values of Widths for Some Classes of Analytic Functions in the Weighted Bergman Space
    Langarshoev, M. R.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2016, 67 (10) : 1537 - 1551