Evaluation of the operatorial Q-system for non-compact super spin chains

被引:0
|
作者
Rouven Frassek
Christian Marboe
David Meidinger
机构
[1] Institut des Hautes Études Scientifiques,School of Mathematics
[2] Trinity College Dublin,undefined
[3] Institut für Mathematik und Institut für Physik,undefined
[4] Humboldt-Universität zu Berlin,undefined
[5] IRIS Gebäude,undefined
来源
Journal of High Energy Physics | / 2017卷
关键词
Bethe Ansatz; Lattice Integrable Models; Quantum Groups; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We present an approach to evaluate the full operatorial Q-system of all up,q|r+s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{u}\left(p,q\Big|r+s\right) $$\end{document}-invariant spin chains with representations of Jordan-Schwinger type. In particular, this includes the super spin chain of planar N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} super Yang-Mills theory at one loop in the presence of a diagonal twist. Our method is based on the oscillator construction of Q-operators. The Q-operators are built as traces over Lax operators which are degenerate solutions of the Yang-Baxter equation. For non-compact representations these Lax operators may contain multiple infinite sums that conceal the form of the resulting functions. We determine these infinite sums and calculate the matrix elements of the lowest level Q-operators. Transforming the Lax operators corresponding to the Q-operators into a representation involving only finite sums allows us to take the supertrace and to obtain the explicit form of the Q-operators in terms of finite matrices for a given magnon sector. Imposing the functional relations, we then bootstrap the other Q-operators from those of the lowest level. We exemplify this approach for non-compact spin −s spin chains and apply it to N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} at the one-loop level using the BMN vacuum as an example.
引用
收藏
相关论文
共 43 条
  • [1] Evaluation of the operatorial Q-system for non-compact super spin chains
    Frassek, Rouven
    Marboe, Chriatian
    Meidinger, David
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (09):
  • [2] Oscillator realisations associated to the D-type Yangian: Towards the operatorial Q-system of orthogonal spin chains
    Frassek, Rouven
    NUCLEAR PHYSICS B, 2020, 956
  • [3] Tailoring non-compact spin chains
    Pedro Vieira
    Tianheng Wang
    Journal of High Energy Physics, 2014
  • [4] Tailoring non-compact spin chains
    Vieira, Pedro
    Wang, Tianheng
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (10):
  • [5] Baxter's Q-operators and Operatorial Backlund Flow for Quantum (Super)-Spin Chains
    Kazakov, Vladimir
    Leurent, Sebastien
    Tsuboi, Zengo
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 311 (03) : 787 - 814
  • [6] Baxter’s Q-operators and Operatorial Bäcklund Flow for Quantum (Super)-Spin Chains
    Vladimir Kazakov
    Sebastien Leurent
    Zengo Tsuboi
    Communications in Mathematical Physics, 2012, 311 : 787 - 814
  • [7] Non-compact Quantum Spin Chains as Integrable Stochastic Particle Processes
    Frassek, Rouven
    Giardina, Cristian
    Kurchan, Jorge
    JOURNAL OF STATISTICAL PHYSICS, 2020, 180 (1-6) : 135 - 171
  • [8] Non-compact Quantum Spin Chains as Integrable Stochastic Particle Processes
    Rouven Frassek
    Cristian Giardinà
    Jorge Kurchan
    Journal of Statistical Physics, 2020, 180 : 135 - 171
  • [9] REMARKS ON THE NON-COMPACT SPIN SYSTEMS
    GIELERAK, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (11): : 1899 - 1910
  • [10] Spin- S rational Q-system
    Hou, Jue
    Jiang, Yunfeng
    Zhu, Rui-Dong
    SCIPOST PHYSICS, 2024, 16 (04):