Class Numbers of Indefinite Binary Quadratic Forms

被引:0
|
作者
O. M. Fomenko
机构
[1] Steklov Mathematical Institute,St.Petersburg Department of the
关键词
Positive Constant; Quadratic Form; Algebraic Number; Class Number; Riemann Hypothesis;
D O I
10.1023/A:1025589004026
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$h(d)$$ \end{document} be the class number of properly equivalent primitive binary quadratic forms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ax^2 + bxy + cy^2$$ \end{document} of discriminant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$d = b^2 a - 4ac$$ \end{document}. The case of indefinite forms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(d < 0)$$ \end{document} is considered. Assuming that the extended Riemann hypothesis for some fields of algebraic numbers holds, the following results are proved. 1. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\alpha (x)$$ \end{document} be an arbitrarily slow monotonically increasing function such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\alpha (x) \to \infty$$ \end{document}. Then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\# \left\{ {p \leqslant \left. x \right|{\text{ }}\left( {\frac{{\text{5}}}{p}} \right) = 1,h(5p^2 ) >(\log p)^{\alpha (p)} } \right\} = o(\pi (x)),$$ \end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\pi (x) = \# \{ p \leqslant x\}$$ \end{document}. 2. Let F be an arbitrary sufficiently large positive constant. Then for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x >x_F$$ \end{document}, the relation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\# \left\{ {p \leqslant \left. x \right|{\text{ }}\left( {\frac{{\text{5}}}{p}} \right) = 1,h(5p^2 ) >F} \right\} \asymp \frac{{\pi (x)}}{F}$$ \end{document} holds. 3. The relation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\# \left\{ {p \leqslant \left. x \right|{\text{ }}\left( {\frac{{\text{5}}}{p}} \right) = 1,h(5p^2 ) = 2} \right\} \sim \frac{9}{{19}}A\pi (x)$$ \end{document} holds, where A is Artin's constant. Hence, for the majority of discriminants of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$d = 5p^2$$ \end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\left( {\frac{{\text{5}}}{p}} \right) = 1}$$ \end{document} , the class numbers are small. This is consistent with the Gauss conjecture concerning the behavior of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$h(d)$$ \end{document} for the majority of discriminants \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$d >0$$ \end{document} in the general case. Bibliography: 22 titles.
引用
收藏
页码:4918 / 4932
页数:14
相关论文
共 50 条