Lower bounds on individual sequence regret

被引:0
|
作者
Eyal Gofer
Yishay Mansour
机构
[1] The Hebrew University,The Rachel and Selim Benin School of Computer Science and Engineering
[2] Microsoft Research,Blavatnik School of Computer Science
[3] Tel Aviv University,undefined
来源
Machine Learning | 2016年 / 103卷
关键词
Regret minimization; Online learning; Online linear optimization; Regret lower bounds; Regularized Follow the Leader;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we lower bound the individual sequence anytime regret of a large family of online algorithms. This bound depends on the quadratic variation of the sequence, QT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_T$$\end{document}, and the learning rate. Nevertheless, we show that any learning rate that guarantees a regret upper bound of O(QT)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{Q_T})$$\end{document} necessarily implies an Ω(QT)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (\sqrt{Q_T})$$\end{document} anytime regret on any sequence with quadratic variation QT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_T$$\end{document}. The algorithms we consider are online linear optimization forecasters whose weight vector at time t+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t+1$$\end{document} is the gradient of a concave potential function of cumulative losses at time t. We show that these algorithms include all linear Regularized Follow the Leader algorithms. We prove our result for the case of potentials with negative definite Hessians, and potentials for the best expert setting satisfying some natural regularity conditions. In the best expert setting, we give our result in terms of the translation-invariant relative quadratic variation. We apply our lower bounds to Randomized Weighted Majority and to linear cost Online Gradient Descent. We show that our analysis can be generalized to accommodate diverse measures of variation beside quadratic variation. We apply this generalized analysis to Online Gradient Descent with a regret upper bound that depends on the variance of losses.
引用
收藏
页码:1 / 26
页数:25
相关论文
共 50 条
  • [1] Lower bounds on individual sequence regret
    Gofer, Eyal
    Mansour, Yishay
    [J]. MACHINE LEARNING, 2016, 103 (01) : 1 - 26
  • [2] Unimodal Bandits: Regret Lower Bounds and Optimal Algorithms
    Combes, Richard
    Proutiere, Alexandre
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 1), 2014, 32
  • [3] Sparsity Regret Bounds for Individual Sequences in Online Linear Regression
    Gerchinovitz, Sebastien
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 729 - 769
  • [4] Individual Regret Bounds for the Distributed Online Alternating Direction Method of Multipliers
    Akbari, Mohammad
    Gharesifard, Bahman
    Linder, Lamas
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (04) : 1746 - 1752
  • [5] CRIMED: Lower and Upper Bounds on Regret for Bandits with Unbounded Stochastic Corruption
    Agrawal, Shubhada
    Mathieu, Timothee
    Basu, Debabrota
    Maillard, Odalric-Ambrym
    [J]. INTERNATIONAL CONFERENCE ON ALGORITHMIC LEARNING THEORY, VOL 237, 2024, 237
  • [6] Regret Lower Bounds for Unbiased Adaptive Control of Linear Quadratic Regulators
    Ziemann, Ingvar
    Sandberg, Henrik
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2020, 4 (03): : 785 - 790
  • [7] LOWER BOUNDS AND FAST ALGORITHMS FOR SEQUENCE ACCELERATION
    TROJAN, GM
    [J]. JOURNAL OF THE ACM, 1984, 31 (02) : 329 - 335
  • [8] Regret Bounds for Lifelong Learning
    Alquier, Pierre
    The Tien Mai
    Pontil, Massimiliano
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 261 - 269
  • [9] Regret Bounds for Batched Bandits
    Esfandiari, Hossein
    Karbasi, Amin
    Mehrabian, Abbas
    Mirrokni, Vahab
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7340 - 7348
  • [10] A SEQUENCE OF UPPER AND LOWER BOUNDS FOR THE Q-FUNCTION
    PHILIPS, TK
    SAHRAOUI, A
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1984, 30 (06) : 877 - 878