Nikol’skii’s inequality for different metrics and properties of the sequence of norms of the Fourier sums of a function in the Lorentz space

被引:4
|
作者
E. D. Nursultanov
机构
[1] Kazakhstan Branch of Lomonosov Moscow State University,
关键词
STEKLOV Institute; Trigonometric Polynomial; Lebesgue Space; Lorentz Space; Interpolation Property;
D O I
10.1134/S0081543806040158
中图分类号
学科分类号
摘要
Let (X, Y) be a pair of normed spaces such that X ⊂ Y ⊂ L1[0, 1]n and {ek}k be an expanding sequence of finite sets in ℤn with respect to a scalar or vector parameter k, k ∈ ℕ or k ∈ ℕn. The properties of the sequence of norms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\{ \left\| {S_{e_k } (f)} \right\|x\} _k $$ \end{document} of the Fourier sums of a fixed function f ∈ Y are studied. As the spaces X and Y, the Lebesgue spaces Lp[0, 1], the Lorentz spaces Lp,q[0, 1], Lp,q[0, 1]n, and the anisotropic Lorentz spaces Lp,q*[0, 1]n are considered. In the one-dimensional case, the sequence {ek}k consists of segments, and in the multidimensional case, it is a sequence of hyperbolic crosses or parallelepipeds in ℤn. For trigonometric polynomials with the spectrum given by step hyperbolic crosses and parallelepipeds, various types of inequalities for different metrics in the Lorentz spaces Lp,q[0, 1]n and Lp,q*[0, 1]n are obtained.
引用
收藏
页码:185 / 202
页数:17
相关论文
共 4 条