MHV graviton scattering amplitudes and current algebra on the celestial sphere

被引:0
作者
Shamik Banerjee
Sudip Ghosh
Partha Paul
机构
[1] Institute of Physics,
[2] Homi Bhabha National Institute,undefined
[3] Okinawa Institute of Science and Technology,undefined
[4] Chennai Mathematical Institute,undefined
来源
Journal of High Energy Physics | / 2021卷
关键词
Gauge-gravity correspondence; Models of Quantum Gravity; Scattering Amplitudes; Space-Time Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
The Cachazo-Strominger subleading soft graviton theorem for a positive helicity soft graviton is equivalent to the Ward identities for SL2ℂ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\mathrm{SL}\left(2,\mathrm{\mathbb{C}}\right)} $$\end{document} currents. This naturally gives rise to a SL2ℂ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\mathrm{SL}\left(2,\mathrm{\mathbb{C}}\right)} $$\end{document} current algebra living on the celestial sphere. The generators of the SL2ℂ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\mathrm{SL}\left(2,\mathrm{\mathbb{C}}\right)} $$\end{document} current algebra and the supertranslations, coming from a positive helicity leading soft graviton, form a closed algebra. We find that the OPE of two graviton primaries in the Celestial CFT, extracted from MHV amplitudes, is completely determined in terms of this algebra. To be more precise, 1) The subleading terms in the OPE are determined in terms of the leading OPE coefficient if we demand that both sides of the OPE transform in the same way under this local symmetry algebra. 2) Positive helicity gravitons have null states under this local algebra whose decoupling leads to differential equations for MHV amplitudes. An n point MHV amplitude satisfies two systems of (n − 2) linear first order PDEs corresponding to (n − 2) positive helicity gravitons. We have checked, using Hodges’ formula, that one system of differential equations is satisfied by any MHV amplitude, whereas the other system has been checked up to six graviton MHV amplitude. 3) One can determine the leading OPE coefficients from these differential equations.
引用
收藏
相关论文
共 125 条
  • [1] Weinberg S(1965)2 Phys. Rev. 140 B516-undefined
  • [2] Banerjee S(2020) 4 JHEP 04 130-undefined
  • [3] Ghosh S(2020) 4 JHEP 03 130-undefined
  • [4] Gonzo R(2014)/ JHEP 07 152-undefined
  • [5] Fotopoulos A(2014) 7 JHEP 07 151-undefined
  • [6] Stieberger S(2014) 8 JHEP 08 058-undefined
  • [7] Taylor TR(2017) 4 Phys. Rev. Lett. 119 121601-undefined
  • [8] Zhu B(2017)4 JHEP 08 050-undefined
  • [9] Strominger A(2019) 2 JHEP 08 168-undefined
  • [10] Strominger A(1962) 2 Proc. Roy. Soc. Lond. A 269 21-undefined