Variational Problems of Surfaces in a Sphere

被引:0
|
作者
Bang Chao Yin
机构
[1] Zhengzhou University,School of Mathematics and Statistics
关键词
Submanifold; variation; rigidity theorem; Euler characteristic; 53A10; 53C24; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
Let xM→Sn+p(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x:M \to \mathbb{S}{^{n + p}}(1)$$\end{document} be an n-dimensional submanifold immersed in an (n + p)-dimensional unit sphere Sn+p(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{S}{^{n + p}}(1)$$\end{document}. In this paper, we study n-dimensional submanifolds immersed in Sn+p(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{S}{^{n + p}}(1)$$\end{document} which are critical points of the functional S(x)=∫MSn2dv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal S}(x) = \int_M {{S^{{n \over 2}}}} dv$$\end{document}, where S is the squared length of the second fundamental form of the immersion x. When xM→S2+p(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x:M \to \mathbb{S}{^{2 + p}}(1)$$\end{document} is a surface in S2+p(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{S}{^{2 + p}}(1)$$\end{document}, the functional S(x)=∫MSn2dv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal S}(x) = \int_M {{S^{{n \over 2}}}} dv$$\end{document} represents double volume of image of Gaussian map. For the critical surface of S(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal S}(x)$$\end{document}, we get a relationship between the integral of an extrinsic quantity of the surface and its Euler characteristic. Furthermore, we establish a rigidity theorem for the critical surface of S(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal S}(x)$$\end{document}.
引用
收藏
页码:657 / 665
页数:8
相关论文
共 50 条
  • [1] Variational Problems of Surfaces in a Sphere
    Yin, Bang Chao
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (04) : 657 - 665
  • [2] Variational Problems of Surfaces in a Sphere
    Bang Chao YIN
    ActaMathematicaSinica,EnglishSeries, 2021, (04) : 657 - 665
  • [3] Variational problems on the Sphere
    Bisci, Giovanni Molica
    RECENT TRENDS IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS II: STATIONARY PROBLEMS, 2013, 595 : 273 - +
  • [4] VARIATIONAL PROBLEMS OF TOTAL MEAN CURVATURE OF SUBMANIFOLDS IN A SPHERE
    Guo, Zhen
    Yin, Bangchao
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (08) : 3563 - 3568
  • [5] Variational problems and PDE's on implicit surfaces
    Bertalmío, M
    Sapiro, G
    Cheng, LT
    Osher, S
    IEEE WORKSHOP ON VARIATIONAL AND LEVEL SET METHODS IN COMPUTER VISION, PROCEEDINGS, 2001, : 186 - 193
  • [6] Variational problems and partial differential equations on implicit surfaces
    Bertalmío, M
    Cheng, LT
    Osher, S
    Sapiro, G
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 174 (02) : 759 - 780
  • [8] Incompressible fluid problems on embedded surfaces: Modeling and variational formulations
    Jankuhn, Thomas
    Olshanskii, Maxim A.
    Reusken, Arnold
    INTERFACES AND FREE BOUNDARIES, 2018, 20 (03) : 353 - 377
  • [9] A geometric formulation of gradient descent for variational problems with moving surfaces
    Solem, JE
    Overgaard, NC
    SCALE SPACE AND PDE METHODS IN COMPUTER VISION, PROCEEDINGS, 2005, 3459 : 419 - 430
  • [10] A new variational inequality formulation for seepage problems with free surfaces
    Zheng, H
    Liu, DF
    Lee, CF
    Tham, LG
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2005, 26 (03) : 396 - 406