A Micromechanics-based Finite Element Model for the Constitutive Behavior of Polycrystalline Ferromagnets

被引:2
|
作者
Binglei Wang [1 ]
Changqing Chen [1 ]
Yapeng Shen [1 ]
机构
[1] Xi’an Jiaotong University,The Laboratory for Strength and Vibration, School of Aerospace
关键词
Ferromagnetic polycrystal; Micromechanics; Finite element; Domain switching;
D O I
10.1007/s10409-006-0002-0
中图分类号
学科分类号
摘要
A micromechanics-based finite element model for the constitutive behavior of polycrystalline ferromagnets is developed. In the model, the polycrystalline solid is assumed to comprise numerous single crystals with randomly distributed crystallographic orientations, and the single crystals, in turn, consist of ferromagnetic domains, each of which is represented by a cubic element. The dipole directions of the domains are randomly assigned to simulate the crystallographic nature of ferromagnetic polycrystals. A switching criterion for the domains is specified at the microscopic level. The macroscopic constitutive behavior is obtained by averaging the microscopic/local behavior of each domain. The developed model has been applied to the simulation of a ferromagnetic material. With appropriate material parameters adopted, hysteresis loops of the predicted magnetic induction versus magnetic field and those of the strain versus magnetic field are shown to agree well with experimental observations.
引用
收藏
页码:257 / 264
页数:7
相关论文
共 50 条