Singular integrals unsuitable for the curvature method whose L2-boundedness still implies rectifiability

被引:0
|
作者
Petr Chunaev
Joan Mateu
Xavier Tolsa
机构
[1] Universitat Autònoma de Barcelona,Departament de Matemàtiques
[2] ICREA,Departament de Matemàtiques and BGSMath
[3] Universitat Autònoma de Barcelona,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The well-known curvature method initiated in works of Melnikov and Verdera is now commonly used to relate the L2(μ)-boundedness of certain singular integral operators to the geometric properties of the support of measure μ, e.g., rectifiability. It can be applied, however, only if Menger curvature-like permutations directly associated with the kernel of the operator are non-negative. We give an example of an operator in the plane whose corresponding permutations change sign but the L2(μ)-boundedness of the operator still implies that the support of μ is rectifiable. To the best of our knowledge, it is the first example of this type. We also obtain several related results with Ahlfors–David regularity conditions.
引用
收藏
页码:741 / 764
页数:23
相关论文
共 10 条