A New Approach to a Multicriteria Optimization Problem

被引:0
|
作者
Wilfredo Sosa
Fernanda M.P. Raupp
机构
[1] Universidad Nacional de Ingenieria,Instituto de Matemática e Ciencias Afines
[2] MCT,Laboratório Nacional de Computação Científica
来源
Numerical Algorithms | 2004年 / 35卷
关键词
multicriteria optimization; convex feasibility problem; analytic center cutting plane algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new approach to a multicriteria optimization problem, where the objective and the constraints are linear functions. From an equivalent equilibrium problem, first suggested in [5,6,8], we show new characterizations of weakly efficient points based on the partial order induced by a nonempty closed convex cone in a finite-dimensional linear space, as in [7]. Thus, we are able to apply the analytic center cutting plane algorithm that finds equilibrium points approximately, by Raupp and Sosa [10], in order to find approximate weakly efficient solutions of MOP.
引用
收藏
页码:233 / 247
页数:14
相关论文
共 50 条
  • [1] A new approach to a multicriteria optimization problem
    Sosa, W
    Raupp, FMP
    NUMERICAL ALGORITHMS, 2004, 35 (2-4) : 233 - 247
  • [2] Multicriteria Approach to Bilevel Optimization
    J. Fliege
    L. N. Vicente
    Journal of Optimization Theory and Applications, 2006, 131 : 209 - 225
  • [3] Multicriteria Optimization Problem on Prefractal Graph
    Kochkarov, Rasul
    MATHEMATICS, 2022, 10 (06)
  • [4] A NONDIFFERENTIABLE APPROACH TO MULTICRITERIA OPTIMIZATION
    EVTUSHENKO, Y
    POTAPOV, M
    LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1985, 255 : 97 - 102
  • [5] Multicriteria approach to bilevel optimization
    Fliege, J.
    Vicente, L. N.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 131 (02) : 209 - 225
  • [6] Approach to Solve a Criteria Problem of the ABC Algorithm Used to the WBDP Multicriteria Optimization
    Ewald, Dawid
    Czerniak, Jacek M.
    Zarzycki, Hubert
    INTELLIGENT SYSTEMS'2014, VOL 1: MATHEMATICAL FOUNDATIONS, THEORY, ANALYSES, 2015, 322 : 129 - 137
  • [7] LINGUISTIC APPROACH TO THE MULTICRITERIA RANKING PROBLEM
    XU, LD
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1990, 21 (09) : 1773 - 1782
  • [8] PARETO GROUP STRUCTURE IN A MULTICRITERIA OPTIMIZATION PROBLEM
    Kozin, I. V.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2010, 46 (05) : 803 - 806
  • [9] AN APPROACH TO MULTICRITERIA OPTIMIZATION OF ROTATIONAL THERAPY
    Fenwick, J.
    Montero, J. Pardo
    RADIOTHERAPY AND ONCOLOGY, 2010, 96 : S75 - S75
  • [10] A weak equilibrium solution for multicriteria optimization problem
    Troeva, MS
    Malafeyev, OA
    CONTROL APPLICATIONS OF OPTIMIZATION 2000, VOLS 1 AND 2, 2000, : 363 - 368