Non-stationary regimes of surface gravity wave turbulence

被引:0
|
作者
R. Bedard
S. Lukaschuk
S. Nazarenko
机构
[1] University of Hull,Department of Engineering
[2] University of Warwick,Mathematics Institute
来源
JETP Letters | 2013年 / 97卷
关键词
Gravity Wave; JETP Letter; Energy Dissipation Rate; Spectral Amplitude; Decay Stage;
D O I
暂无
中图分类号
学科分类号
摘要
We present experimental results about rising and decaying gravity wave turbulence in a large laboratory flume. We consider the time evolution of the wave energy spectral components in ω- and k-domains and demonstrate that emerging wave turbulence can be characterized by two time scales—a short dynamical scale due to nonlinear wave interactions and a longer kinetic time scale characterizing formation of a stationary wave energy spectrum. In the decay regime we observed the maximum of the wave energy spectrum decreasing in time initially as the power law, ∝t−1/2, as predicted by the weak turbulence theory, and then exponentially due to viscous friction.
引用
收藏
页码:459 / 465
页数:6
相关论文
共 50 条
  • [1] Non-stationary regimes of surface gravity wave turbulence
    Bedard, R.
    Lukaschuk, S.
    Nazarenko, S.
    [J]. JETP LETTERS, 2013, 97 (08) : 459 - 465
  • [2] Non-stationary spectra of local wave turbulence
    Connaughton, C
    Newell, AC
    Pomeau, Y
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2003, 184 (1-4) : 64 - 85
  • [3] Phenomenological model for predicting stationary and non-stationary spectra of wave turbulence in vibrating plates
    Humbert, T.
    Josserand, C.
    Touze, C.
    Cadot, O.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2016, 316 : 34 - 42
  • [4] Model of non-stationary, inhomogeneous turbulence
    Andrew D. Bragg
    Susan Kurien
    Timothy T. Clark
    [J]. Theoretical and Computational Fluid Dynamics, 2017, 31 : 51 - 66
  • [5] Model of non-stationary, inhomogeneous turbulence
    Bragg, Andrew D.
    Kurien, Susan
    Clark, Timothy T.
    [J]. THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2017, 31 (01) : 51 - 66
  • [6] Non-stationary regimes: the QdF models behaviour
    Prudhomme, C
    Galea, G
    [J]. FRIEND'97-REGIONAL HYDROLOGY: CONCEPTS AND MODELS FOR SUSTAINABLE WATER RESOURCE MANAGEMENT, 1997, (246): : 267 - 276
  • [7] Non-stationary interference cancellation in HF surface wave radar
    Fabrizio, GA
    Gershman, AB
    Turley, MD
    [J]. 2003 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON RADAR, 2003, : 672 - 677
  • [8] On wave propagation in an inhomogeneous non-stationary medium with an inhomogeneous non-stationary flow
    Gorman, AD
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2055): : 701 - 710
  • [9] AMPLIFICATION OF AN ARBITRARY NON-STATIONARY SURFACE WAVE OF DISCONTINUITY IN AN ELASTIC BODY
    KALISKI, S
    [J]. ARCHIWUM MECHANIKI STOSOWANEJ, 1968, 20 (06): : 767 - &
  • [10] Estimating flood recurrence uncertainty for non-stationary regimes
    Gomes, Yan Ranny Machado
    Marques, Lais de Almeida
    Souza, Christopher Freire
    [J]. RBRH-REVISTA BRASILEIRA DE RECURSOS HIDRICOS, 2023, 28