On Some Properties of Topological Entropy and Topological Pressure of Families of Dynamical Systems Continuously Depending on a Parameter

被引:0
|
作者
A. N. Vetokhin
机构
[1] Lomonosov Moscow State University,
[2] Bauman Moscow State Technical University,undefined
来源
Differential Equations | 2019年 / 55卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For each everywhere dense subset G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal G}$$\end{document} of type Gδ in a complete metric separable zero-dimensional space, we construct a family of dynamical systems continuously depending on a parameter varying in this space such that the set of points of lower semicontinuity of the topological entropy of its systems treated as a function of the parameter coincides with the set G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal G}$$\end{document}. For a family of dynamical systems continuously depending on the parameter, we prove that the set of points of lower semicontinuity and the set of points of upper semicontinuity of the topological pressure of its systems treated as a function of the parameter are sets of type Gδ and Fσδ, respectively.
引用
收藏
页码:1275 / 1283
页数:8
相关论文
共 50 条