Let A, B, and X be bounded linear operators on a complex separable Hilbert space. It is shown that if A and B are self-adjoint with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$a_{1} \leq A \leq a_{2}$$\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$b_{1} \leq B \leq b_{2}$$\end{document} for some real numbers a1, a2, b1, and b2, then for every unitarily invariant norm|||·|||,
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$|||AX - XB||| \leq {\rm max}(a_2 - b_1, b_2 - a_1) |||X||| $$\end{document}. If, in addition, X is positive, then
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$|||AX - XA||| \leq \frac{1}{2} (a_2 - a_1) |||X \oplus X||| $$\end{document}. These norm inequalities generalize recent related inequalities due to Kittaneh, Bhatia-Kittaneh, and Wang-Du.