Norm Inequalities for Commutators of Self-adjoint Operators

被引:0
|
作者
Fuad Kittaneh
机构
[1] University of Jordan,Department of Mathematics
来源
关键词
Commutator; normal operator; self-adjoint operator; positive operator; unitarily invariant norm; norm inequality; Primary 47A30; Secondary 47B15, 47B47;
D O I
暂无
中图分类号
学科分类号
摘要
Let A, B, and X be bounded linear operators on a complex separable Hilbert space. It is shown that if A and B are self-adjoint with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{1} \leq A \leq a_{2}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{1} \leq B \leq b_{2}$$\end{document} for some real numbers a1, a2, b1, and b2, then for every unitarily invariant norm|||·|||, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|||AX - XB||| \leq {\rm max}(a_2 - b_1, b_2 - a_1) |||X||| $$\end{document}. If, in addition, X is positive, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|||AX - XA||| \leq \frac{1}{2} (a_2 - a_1) |||X \oplus X||| $$\end{document}. These norm inequalities generalize recent related inequalities due to Kittaneh, Bhatia-Kittaneh, and Wang-Du.
引用
收藏
页码:129 / 135
页数:6
相关论文
共 50 条