Representing an isotone map between two bounded ordered sets by principal lattice congruences

被引:0
|
作者
G. Czédli
机构
[1] Bolyai Institute,University of Szeged
来源
Acta Mathematica Hungarica | 2018年 / 155卷
关键词
principal congruence; lattice congruence; ordered set; poset; quasi-colored lattice; preordering; quasiordering; isotone map; representation; 06B10; 18B05;
D O I
暂无
中图分类号
学科分类号
摘要
For bounded lattices L1 and L2, let f:L1→L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\colon L_1 \to L_2}$$\end{document} be a lattice homomorphism. Then the map Princ(f):Princ(L1)→Princ(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Princ}(f)\colon \rm {Princ}(\it L_1) \to {\rm Princ}(\it L_2)}$$\end{document}, defined by con(x,y)↦con(f(x),f(y))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm con}(x,y) \mapsto {\rm con}(f(x),f(y))}$$\end{document}, is a 0-preserving isotone map from the bounded ordered set Princ(L1) of principal congruences of L1 to that of L2. We prove that every 0-preserving isotone map between two bounded ordered sets can be represented in this way. Our result generalizes a 2016 result of G. Grätzer from {0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{0,1}\}$$\end{document}-preserving isotone maps to 0-preserving isotone maps.
引用
收藏
页码:332 / 354
页数:22
相关论文
共 18 条