Addition Theorem and Matrix Elements of Radiative Multipole Operators

被引:0
|
作者
Mohammad Moharerrzadeh
Pancracio Palting
Lue-Yung Chow Chiu
机构
[1] Bowie State University,Department of Natural Sciences
[2] Pancracio Palting,undefined
[3] Lue-Yung Chow Chiu,undefined
来源
关键词
Addition Theorem; radiative multipole operator; Theoretical chemistry;
D O I
暂无
中图分类号
学科分类号
摘要
The addition theorem for radiative multipole operators, i.e., electric-dipole, electric-quadropole or magnetic-dipole, etc., is derived through a translational transformation. The addition theorem of the μth component of the angular momentum operator, Lμ (r), is also derived as a simple expression that represents a general translation of the angular momentum operator along an arbitrary orientation of a displacement vector and when this displacement is along the Z-axis. The addition theorem of the multipole operators is then used to analytically evaluate the matrix elements of the electric and magnetic multipole operators over the basis functions, the spherical Laguerre Gaussian-type function (LGTF), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_n^{l + (1/2)} (\alpha r^2) r^l Y_{lm} ({\rm \hat {\bf r}}) {\rm e}^{- \alpha r^2}$$\end{document}. The explicit and simple formulas obtained for the matrix elements of these operators are in terms of vector-coupling coefficients and LGTFs of the internuclear coordinates. The matrix element of the magnetic multipole operator is shown to be a linear combination of the matrix element of the electric multipole operator.
引用
收藏
页码:641 / 656
页数:15
相关论文
共 50 条
  • [1] Addition theorem and matrix elements of radiative multipole operators
    Moharerrzadeh, M
    Palting, P
    Chiu, LYC
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2006, 39 (01) : 57 - 72
  • [2] Addition theorem and matrix elements of radiative multipole operators
    Moharerrzadeh, M
    Palting, P
    Chiu, LYC
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 38 (04) : 641 - 656
  • [3] Addition theorem and matrix elements of radiative multipole operators
    Mohammad Moharerrzadeh
    Pancracio Palting
    Lue-Yung Chow Chiu
    Journal of Mathematical Chemistry, 2006, 39 : 57 - 72
  • [4] Multipole matrix elements
    Slavyanov, SY
    INTERNATIONAL SEMINAR DAY ON DIFFRACTION, PROCEEDINGS, 1999, : 189 - 195
  • [5] EXPLICIT MATRIX ELEMENTS FOR MULTIPOLE RADIATION
    TREACY, PB
    AUSTRALIAN JOURNAL OF PHYSICS, 1953, 6 (03): : 241 - 244
  • [6] Recurrent calculations of multipole matrix elements
    Slavyanov, SY
    THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 120 (03) : 1213 - 1219
  • [7] Recurrent calculations of multipole matrix elements
    S. Yu. Slavyanov
    Theoretical and Mathematical Physics, 1999, 120 : 1213 - 1219
  • [8] MULTIPOLE MATRIX ELEMENTS OF TRANSLATION OPERATOR
    DANOS, M
    MAXIMON, LC
    JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (05) : 766 - &
  • [9] The general addition theorem and ladder operators
    Ravelo, J. Garcia
    Queijeiro, A.
    Cuevas, R.
    Pena, J. J.
    Morales, J.
    APPLIED MATHEMATICS LETTERS, 2007, 20 (07) : 758 - 763
  • [10] MATRIX ELEMENTS IN RADIATIVE TRANSITIONS
    BLINSTOYLE, RJ
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION A, 1953, 66 (404): : 729 - 732