GRÖBNER THEORY AND TROPICAL GEOMETRY ON SPHERICAL VARIETIES

被引:0
|
作者
KIUMARS KAVEH
CHRISTOPHER MANON
机构
[1] University of Pittsburgh,Department of Mathematics
[2] University of Kentucky,Department of Mathematics
来源
Transformation Groups | 2019年 / 24卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a connected reductive algebraic group. We develop a Gröbner theory for multiplicity-free G-algebras, as well as a tropical geometry for subschemes in a spherical homogeneous space G/H. We define the notion of a spherical tropical variety and prove a fundamental theorem of tropical geometry in this context. We also propose a definition for a spherical amoeba in G/H using Cartan decomposition. Our work partly builds on the previous work of Vogiannou on spherical tropicalization and in some ways is complementary.
引用
收藏
页码:1095 / 1145
页数:50
相关论文
共 50 条
  • [1] GRoBNER THEORY AND TROPICAL GEOMETRY ON SPHERICAL VARIETIES
    Kaveh, Kiumars
    Manon, Christopher
    [J]. TRANSFORMATION GROUPS, 2019, 24 (04) : 1095 - 1145
  • [2] Gr(sic)bner geometry for skew-symmetric matrix Schubert varieties
    Marberg, Eric
    Pawlowski, Brendan
    [J]. ADVANCES IN MATHEMATICS, 2022, 405
  • [3] Tropical Differential Gröbner Bases
    Youren Hu
    Xiao-Shan Gao
    [J]. Mathematics in Computer Science, 2021, 15 : 255 - 269
  • [4] Gröbner Bases and Systems Theory
    Bruno Buchberger
    [J]. Multidimensional Systems and Signal Processing, 2001, 12 : 223 - 251
  • [5] ON THE GEOMETRY OF SPHERICAL VARIETIES
    NICOLAS PERRIN
    [J]. Transformation Groups, 2014, 19 : 171 - 223
  • [6] ON THE GEOMETRY OF SPHERICAL VARIETIES
    BRION, M
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1991, 66 (02) : 237 - 262
  • [7] ON THE GEOMETRY OF SPHERICAL VARIETIES
    Perrin, Nicolas
    [J]. TRANSFORMATION GROUPS, 2014, 19 (01) : 171 - 223
  • [8] Gröbner geometry for regular nilpotent Hessenberg Schubert cells
    Cummings, Mike
    Da Silva, Sergio
    Harada, Megumi
    Rajchgot, Jenna
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (07)
  • [9] Gröbner basis approach to list decoding of algebraic geometry codes
    Henry O’Keeffe
    Patrick Fitzpatrick
    [J]. Applicable Algebra in Engineering, Communication and Computing, 2007, 18 : 445 - 466
  • [10] Gröbner rings
    Pola E.
    Yengui I.
    [J]. Acta Scientiarum Mathematicarum, 2014, 80 (3-4): : 363 - 372