Asymptotic entropy of the ranges of random walks on discrete groups

被引:0
|
作者
Xinxing Chen
Jiansheng Xie
Minzhi Zhao
机构
[1] Shanghai Jiaotong University,School of Mathematical Sciences
[2] Fudan University,Shanghai Center of Mathematics
[3] Fudan University,School of Mathematical Sciences
[4] Zhejiang University,School of Mathematical Sciences
来源
Science China Mathematics | 2020年 / 63卷
关键词
random walk; entropy; range; recurrent; 60G50; 60J10; 05C25;
D O I
暂无
中图分类号
学科分类号
摘要
Inspired by Benjamini et al. (2010) and Windisch (2010), we consider the entropy of the random walk ranges Rn formed by the first n steps of a random walk S on a discrete group. In this setting, we show the existence of hR:=limn→∞H(Rn)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_R :={\lim}_{n\rightarrow\infty}\frac{H(R_n)}{n}$$\end{document} called the asymptotic entropy of the ranges. A sample version of the above statement in the sense of Shannon (1948) is also proved. This answers a question raised by Windisch (2010). We also present a systematic characterization of the vanishing asymptotic entropy of the ranges. Particularly, we show that hR = 0 if and only if the random walk either is recurrent or escapes to negative infinity without left jump. By introducing the weighted digraphs Гn formed by the underlying random walk, we can characterize the recurrence property of S as the vanishing property of the quantity limn→∞H(Γn)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lim}_{n\rightarrow\infty}\frac{H(\Gamma_n)}{n}$$\end{document} which is an analogue of hR.
引用
收藏
页码:1153 / 1168
页数:15
相关论文
共 50 条
  • [1] Asymptotic entropy of the ranges of random walks on discrete groups
    Xinxing Chen
    Jiansheng Xie
    Minzhi Zhao
    ScienceChina(Mathematics), 2020, 63 (06) : 1153 - 1168
  • [2] Asymptotic entropy of the ranges of random walks on discrete groups
    Chen, Xinxing
    Xie, Jiansheng
    Zhao, Minzhi
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (06) : 1153 - 1168
  • [3] Asymptotic entropy and Green speed for random walks on countable groups
    Blachere, Sebastien
    Haissinsky, Peter
    Mathieu, Pierre
    ANNALS OF PROBABILITY, 2008, 36 (03): : 1134 - 1152
  • [4] RANDOM-WALKS ON DISCRETE-GROUPS - BOUNDARY AND ENTROPY
    KAIMANOVICH, VA
    VERSHIK, AM
    ANNALS OF PROBABILITY, 1983, 11 (03): : 457 - 490
  • [5] Asymptotic entropy of random walks on Fuchsian buildings and Kac–Moody groups
    Lorenz Gilch
    Sebastian Müller
    James Parkinson
    Mathematische Zeitschrift, 2017, 285 : 707 - 738
  • [6] Asymptotic entropy of transformed random walks
    Forghani, Behrang
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 : 1480 - 1491
  • [7] Asymptotic entropy of random walks on Fuchsian buildings and Kac-Moody groups
    Gilch, Lorenz
    Muller, Sebastian
    Parkinson, James
    MATHEMATISCHE ZEITSCHRIFT, 2017, 285 (3-4) : 707 - 738
  • [8] Asymptotic Entropy of Random Walks on Free Products
    Gilch, Lorenz A.
    ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 73 - 102
  • [9] AN ENTROPY CRITERION OF MAXIMALITY FOR THE BOUNDARY OF RANDOM-WALKS ON DISCRETE-GROUPS
    KAIMANOVICH, VA
    DOKLADY AKADEMII NAUK SSSR, 1985, 280 (05): : 1051 - 1054
  • [10] RANDOM WALKS ON DISCRETE ABELIAN GROUPS
    Myronyuk, Margaryta
    COLLOQUIUM MATHEMATICUM, 2018, 152 (02) : 273 - 284